NEXT GENERATION TOOLING
  • Home
    • Schedule
    • Training
  • About
    • History
    • Contact
  • Territories
    • NorCal & N-NV
    • SoCal & S-NV
    • Mountains
  • Principals
    • Tooling >
      • 2V Industries
      • BIG Daishowa
      • Champion Storage
      • Drill America
      • Jewell Group
      • Mapal
      • Martindale Gaylee
      • OSG Tool
      • Performance Micro Tool
      • Platinum Tooling
      • TechniksUSA
    • Workholding >
      • BIG Daishowa
      • Earth Chain
      • Jergens
      • mPower Workholding
  • Promotions
  • Events
  • News
  • Technical

The Different Types of Boring Tools

2/16/2022

0 Comments

 
different-types-of-boring-tools
Put simply, the manufacturing process of boring is enlarging a hole in a piece of metal. There are quite a few different pieces of machinery or approaches that can be used to make holes from lathes and mills to line boring or interpolation. We wanted to do a quick break down of the different kinds of boring tools available to bore holes and/or secondary boring operations.

Boring Bars

Boring deep holes can involve extreme length-to-diameter ratios, or overhang, when it comes to tooling assemblies. Since it can be difficult to maintain accuracy and stability in these scenarios, we need boring bars to extend tooling assemblies and while maintaining the rigidity to make perfect circles with on-spec finishes.

Solid boring bars
Typically made of carbide for finishing or heavy metal for roughing, solid boring bars have dense structures that make for a more stable cut as axial force is applied.

Damping bars
When cutting speeds are compromised, or surface finishes show chatter in a long-reach boring operation, damping bars are an option. They have integrated damping systems. Our version, the Smart Damper, works as both a counter damper and friction damper so that chatter is essentially absorbed.
different-types-of-boring-tools-2

Boring Heads

Boring heads are specifically designed to enlarge an existing hole. They hold cutters in position so they can rotate and gradually remove material until the hole is at the desired diameter.

Rough boring heads
Once a bore is started with a drill or by another method, rough boring heads are the choice for removing larger amounts of material. They are built more rigid, to handle the increased depths of cut, torque and axial forces needed to efficiently and consistently make the passes to remove materials.

Fine boring heads
Fine boring heads are best used for more delicate and precise removal of material that finishes the work the rough boring head started. They are often balanced for high-speed cutting since that’s the best approach for reaching exact specifications.

Twin cutter boring heads
Most boring heads feature one cutter that cuts as its feed diameter is adjusted by the machine. There are twin cutter boring heads that can speed up cutting and add versatility. For example, the Series 319 and other BIG KAISER twin cutter boring heads include two cutters that can perform balanced or stepped cutting without additional accessories or adjustments by switching the mounting locations of the insert holders that have varied heights.

Digital boring heads
Traditionally, adjusting boring heads has been painstaking and time-consuming, especially when it’s done in the machine. It’s easy to make mistakes when maneuvering to read the diameter dial and adjusting it to the right diameter. Digital boring heads have a LED that makes precise adjustments much easier.
different-types-of-boring-tools-4

Starter Drills

Since cutters are on diameter of boring heads and not their face, they are not able to initiate a hole on a flat surface or raw material. Especially in smaller bores, fluted drills called starter drills can be used to get the hole started before rough boring.

Specialty boring heads
Back boring and face grooving heads, as well as chamfering insert holders, are available for some of the most common secondary operations, after a hole is bored. We produce specific heads with cutters at the appropriate angles so each of these operations can be done without manually moving the part, changing the tool or adjusting the cutter angle.

Modular boring tools
Since limiting length-to-diameter ratios is so crucial to boring success, it’s extremely valuable to be able to make your tooling assembly as short as possible. Our modular components are based on a cylindrical connection with radial locking screw that allows for the ideal combination of different kinds of shanks, reductions and extensions, bars, ER collet adapters and coolant inducers.

Looking for some help finding the right boring equipment for your next job or new machine? Our engineers are here to help. Get in touch with us here.
0 Comments

To Balance, Or Not To Balance? Toolholders, That Is

3/16/2021

0 Comments

 
DEPTH OF CUT COLUMN
by Jack Burley, President and COO at BIG KAISER Precision Tooling Inc.
It’s time for machine tool builders and machining companies to shelf the long-standing ISO 1940-1 standard in favor of ISO 16084:2017. Not only is balancing tools rarely necessary, it can also be risky.
A lot of conflicting information has circulated over the years about balancing tools. As an author of the new standard for calculating permissible static and dynamic residual unbalances of rotating single tools and tool systems – ISO 16084:2017 – allow me to clear some things up and, hopefully, make life a little easier for you.
An argument can be made for balancing almost every tool put in a machine. In the world of rotating tools, small changes to an assembly, like a new cutting tool, collet, nut or retention knob, can put an assembly out of tolerance.

​Therefore, it stands to reason that any unbalance could translate to the part, tooling and/or machine spindle in harmful ways. You’ll hear the case for balancing every single tool based on the 
long-standing ISO 1940-1 standard.
over-balanced-tool-holder
Balancing a toolholder several times causes the toolholder to become excessively modified. It's OVERBALANCED
Since its institution in 1940, the G2.5 balance specification has been widely accepted across the industry; i.e., “it’s how things have always been done.”

However, machines were much slower 80 years ago. Back then, the most advanced machines would have spun larger, heavier tools at a maximum speed of about 4,000 RPM. If you applied the math from those days to today, you’d get unachievable values.

For example, the tolerances defined by G2.5 for tools with a mass of less than 1 pound rated for 40,000 RPM calculates to 0.2 gram millimeters (gm.mm.) of permissible unbalance and eccentricity of 0.6 micron. This isn’t within the repeatable range for any balance machine on the market.

Similarly, application-specific assemblies, for operations like back boring and small, lightweight, high-speed toolholders, can’t be accurately balanced for G2.5.

Machine tool builders rely on an outdated number, too, often basing spindle warranty coverage on using balanced tools at very specific close tolerances. While it’s true that poorly balanced tools run at high speeds wear a spindle faster, decently balanced tools performing common operations won’t wear spindles or tools drastically and deliver the results you’re looking for.
While it’s true that poorly balanced tools run at high speeds wear a spindle faster, decently balanced tools performing common operations won’t wear spindles or tools drastically and deliver the results you’re looking for.

A Little Lesson About Forces

This all begs the question: When do you need to take the time to balance holders? I would argue that tools require balancing only if they’re notably asymmetrical or being used for high-speed fine finishing. Here’s a rule I’ve long followed: If cutting forces exceed centrifugal forces due to unbalance, high-precision balancing isn’t needed because the force required to balance the tool will most likely be less than cutting forces.
In other words, if you’re rough milling with a heavy radial cut, the different forces will start bending the tool. When that happens, the cutting forces and all the feed forces will be substantially higher than whatever the unbalance forces might be. If that’s the case, it’s not that you take the unbalance force and add it to the cutting force and find your adjustment. 
Big Kiaser New Baby Chuck and Mega New Baby Chuck are balanced for High speed machining
Big Kiaser New Baby Chuck and Mega New Baby Chuck are balanced for High speed machining. The Precision collet is guaranteed to produce a maximum runout of only 1 micron at the collet nose.
At that point, aggressive cutting – not unbalance – is going to damage the spindle.  

Unbalanced tools are also blamed for issues that turn out to be misunderstandings about a machine’s spindle. I’ve visited shops with new high-speed spindles that had trouble running micro tools over 15,000 RPM. They rebalanced all the tools on the advice of their machine tool supplier, but to no avail.  It turned out the machine was tuned for higher torque and higher cutting forces. Before going to the effort of balancing toolholders, work with your machine builder to understand where a spindle is tuned.

Not only is balancing tools rarely necessary, it can also be risky. Our inherently asymmetrical fine-boring heads are a good example. Because we balance them at the center, a neutral position of the work range, you lose that balance if you adjust out or in.

To adjust, you’d typically add weight to the light side, which can be a problem for chip evacuation and an obstructor. Or you can remove weight from the heavy side, but that means you have to put some big cuts on the same axis of the insert and insert holder, ultimately weakening the tool.

In longer tool assemblies, common corrections made for static unbalance can also cause issues. It happens when a toolholder is corrected for static unbalance in the wrong plane; i.e., adding or removing weight somewhere on the assembly that’s not 180 degrees across from the area where there’s a surplus or deficit.

​Once the tool is spun at full speed, those weights pull in opposite directions and create a couple unbalance that often worsens the situation.
BIG KIASER Mega ER Balanced holders
All the components of Big Kaiser's Mega ER Grip Series - Body, Collet and Collet nut - Are all balanced for high speed machining

A Cautionary Tale

If you do go down the balancing road, you’d better know where you can modify tools, what’s inside, how deep you can go, and at what angles. Whether you’re adding or removing material on a holder, I highly recommend consulting the tool manufacturer for guidance first.

As a cautionary tale, consider a customer who was attempting to balance a batch of our coolant-fed holders. Based on the balancing machine, the operator drilled ¼-inch holes at the prescribed angle into the body of the holders. Not realizing what was inside, he drilled into cross holes connecting coolant flow and ruined several holders.

Tooling manufacturers are doing their part to avert disasters like this. For most, simple tools like collet chucks or hydraulic chucks are fairly easy to balance during manufacturing. We account for any asymmetrical features while machining and grinding holders and pilot each moving part, ensuring they’ll locate concentrically during assembly. These measures ensure the residual unbalance of the assemblies is very, very low and eliminate the need for balancing.
Auto-balancing boring heads are designed specifically for the high-speed finishing I mentioned earlier, where unbalance force can be greater than cutting force. Our EWB boring heads, for instance, have a small internal counterweight that moves in direct proportion with each adjustment. Because the weight is carbide, it’s three times more dense than the steel in the tool carrier and is maintained inside the head’s symmetrical body.
Picture
Autobalance boring heads, Series 310 EWB, maintain perfect balance throughout the work range due to the integrated counter-balance mechanism. Even at maximum speeds, balanced tools guarantee vibration-free boring, resulting in increased productivity and high precision.
Decades of the same standards have conditioned us to think a certain way about balancing tools. While it seems logical that every tool must be balanced, it’s just not the case: Many issues attributed to unbalance aren’t caused  by unbalance, and the risks of balancing every single tool often aren’t worth the reward.
​
Save your balancing time and resources for high-speed fine finishing. If you do have work where balance is crucial, consider how the tools you buy are balanced and piloted out of the box and/or consult your partners before making any modifications.
0 Comments

A Practical Tutorial on High-speed Tool Holders

5/13/2020

0 Comments

 
A guest blog from BIG KAISER.
BIG Kaiser Balancing Practical Tutorial on High-speed Tool Holder
High-speed machining started getting popular in the ‘90s, especially in aerospace where they replaced fabricating processes with machining monolithic parts like wing struts from billets. Machine tools capable of spinning cutting tools at tens of thousands of RPM made it easier to produce these parts quickly.

Like machines, holders adapted. The centrifugal forces they had to manage in order to keep tools cutting correctly became extreme. The toolholding systems available at that time were found not to be as effective as the shallower 1-to-10 taper ratio of the German hollow taper shank, hohl shaft kegel (HSK) in German. The HSK has since been standardized to ISO specifications (12164-1, -2). 

HSK is now available in several sizes and forms to fit with small to large machines. For the most part, the market has settled on the form A for general milling. It has been adopted in Japan, North America and Europe and is truly one of the only worldwide-side toolholder standards. Form E or F is for high-speed machining. The forms have different features depending on the standard they follow.  
​
In the end, to achieve efficient tool life, proper finish and productivity in high-speed work, holders need to be as rigid, compact and short as possible to keep the whole assembly stable. 

What to know when choosing a high-speed tool holder ​

  1. Outer diameters/nuts with as few holes or slots as possible reduce noise, coolant splatter and enhance strength 
  2. Extra contact length of the internal taper of chuck bodies strengthens grip
  3. Limit collet overhang in your application
  4. Choose the right interface  
  5. Don’t overlook the spindle interface – we strongly recommend licensed dual-contact holders for maximum stability 
  6. The higher the gripping force the better
  7. A shallow collet taper and micro-mirror ground-finished surfaces improve concentricity and balance 
  8. Keep in mind how you’ll tighten nuts safely for secure  clamping and pull stud protection
  9. Consult ISO16084 provisions for the definition of maximum imbalance for different applications, defined as 'standard or roughing operations' and 'fine or finish operations'
When it comes to balancing holders, the quality G2.5 is widely used in the industry and is described in the ISO 1940-1 (issued in 2003) standard. However, this quality class is often over-specified and is in many cases not economically or technically feasible, especially when applied to smaller and lighter tools. Standards often applied to tools are more suited for rigid rotors and are practical in a broader use for balancing.

However, it cannot be applied to a complete system of spindles, tool holders and tools adequately and within technical constraints. For example, a tool to be compliant will have to be balanced to less than 1 gmm/kg at a speed of 25,000 rpm, which in turn corresponds to a mass eccentricity of less than 1 μm. This allowable tolerance is less than the interchange accuracy for even HSK, essentially negating all the costs and time for balancing the tool to such a strict tolerance. 

For this reason, all BIG KAISER tool holders are balanced according ISO 16084 (issued in 2017) specifically developed for rotating tool systems. ISO 16084 focuses on the interaction between spindle and tool factoring in the allowable load on the spindle bearings generated by the tool’s imbalance. This load must not exceed one percent of the dynamic load capacity of the spindle bearings. 

According to ISO 16084, the allowable unbalance tolerance is specified in [gmm] and is not expressed using a special quality grade [G]. In conclusion, BIG KAISER does not indicate any G-values for balancing quality, but rather the maximum rotational speeds of the individual tool holder. 

The BIG Kiaser MEGA holder program includes a variety of styles that can be used up to 40,000 RPM. They guarantee 100 percent concentricity and runout accuracy down to .00004" at the nose. They are built specifically to withstand speed and forces required in today’s high-throughput environment.
​
For more information on BIG KAISER's approach to balancing tool holders, click here. To learn more about our high-performance tool holders here.  
0 Comments

Next Generation Tooling Now Offers Technical Training!

6/14/2017

3 Comments

 
We are very excited to announce that we are now able to offer on-site technical training to YOUR machinists at YOUR location!  This is offered at no charge  to customers who use any of the manufacturer's whom we represent in California and Nevada.  

However, just because you don't purchase things from us, don't feel left out! We also offer on-site topic specter training on any of the following topics for $150/hour.  

Each presentation lasts about 2 hours.  The presentations last approximately 45-60 minutes with the remaining time for Q&A and discussion about unique applications in your facility.
Picture
Training Classes Available:
Machining 101
  • Basic Boring
  • Basic Chamfering
  • Basic Drill Training
  • Basic End Mill
  • Basic Indexable
  • Basic Tap Training
  • Basic Tool Holders
  • Basic Work Holding / Fixturing​

Advanced Part Manufacturing:
  • Programming Tool Path – Climb versus Conventional
  • Material Machinability – Cubic Inches of Stock Removal
  • Part Set Up / Work Holding / Fixture 
  • Tool Holder Selection, Collet, Solid, Hydraulic, Shrink Fit
  • Cutting Tool Selection – Substrate, Geometry, Coating, Speed and Feeds 
  • Estimating Part Cycle Time
3 Comments

How To: BIG KAISER Series 112 Radial Boring Bar Adjustment Options

12/11/2013

0 Comments

 
Originally posted by Big Kaiser, Matt Tegelman 15. Nov, 2013
Our most widely used finish boring system, BIG KAISER Series 112, features a high precision boring head with a center-mount boring bar or boring bar/insert holder combo with a predefined fixed offset designed to bore one specific size.

Although the BIG KAISER system provides a multitude of standard components to create the ideal combination of boring bar and insert holder – you may not always have the ideal combination at your disposal. Don’t fret – that is the beauty of the system.
Big KAISER Series 112 Radial Boring Bar Adjustment Options
The total boring range of your assembly is reached through radial adjustment of the bar. However, when doing so, there is still always the consideration of balance while assembling the tool. As logic would tell you, the farther away from the boring head’s centerline you offset the boring bar, the greater the unbalance. This affects not only the performance of the tool, but more importantly, the results. And this is especially true for deep hole boring.

To get the greatest productivity and flexibility from the BIG KAISER 112 boring system, we recommend replacing the fixed bar & insert holder with a radial adjustment bar & insert holder which keeps the bar at centerline at all times. This allows for different boring ranges to be reached, all while keeping the tool as balanced as possible.

In this video, Matt Tegelman, Applications Manager and BIG KAISER Product Manager, walks you through the process of adjusting the fixed boring bars and inserts holders. And if balance is a concern, utilizing the radial adjustable option, Matt demonstrates how to properly center the boring bar on both a tool presetter and in a machine spindle, and finally, how to fine-adjust to the desired diameter.
Watch for more of these brief instructional reference videos here on Cut to the Chase blog in the near future.

Tags: balance, boring tool, deep hole boring, How-To, KAISER, Matt Tegelman, tool presetter
0 Comments

I like end mills holders, why shouldn't I use them?

3/13/2013

0 Comments

 
by Bernard Martin

We often run end mill "tests" to determine which tool performs best. Obviously, our goal is to "win' the test and get more business for our manufacturer's. This is article is about one our "tricks" and it's also why we represent both cutting tool manufacturers and rotary tool manufacturers.  We want to make sure that the products work together.
End mIll Holder causes imbalance
As a general rule most cutting tool & tolholder manufacturers prefer to use single angle (ER/DR style) collet chucks for general purpose cutting tool applications under 1/2" (12mm).

The rules are a bit different in High Speed Machining, as there are many more things to consider, but the problems of TIR at high speeds, where you can hear and feel the chatter, are still there in general end mill cutting operations at lower RPM.

It's all boils down to runout and uneven chip load.

End Mill Holders offset cutting tool


End Mill Holders are Prone to Runout Problems

  • The error accumulation on ID (H) tolerance of the end mill holder and the OD shank (h) tolerance of the end mill or drill causes radial runout. The smaller the diameter the more potential for problems...
  • The End Mill can have a tendency to "rock" on the set screw fulcrum point when it comes under load causing axial runout.
  • The imbalance created in the toolholder by the setscrew used to clamp the tool. When you tighten down the setscrew you not only offset the tool but also create an imbalance condition. At higher speeds this is where you get chatter.  
Interestingly, it's not always easy to replicate a problem.  If you are using less expensive end mills, that are not made holding tight shank tolerances, you can see variations on the runout. We sometimes see this when we are asked to run and end mill test: The competitors that where in use suddenly started to perform poorly. Although the end mills conformed to the ANSI shank (h) tolerance on all of their end mills, the lot number had changed the the grind, although still in spec, had changed.

Depending on the application, end mill holders can be used for holding larger insert style end mills, spade drills, etc.  But somewhere between 1/2” and 3/4” there is a line that only you can determine when you need to move from a collet chuck to end mill holder. Generally we recommend using end mill holders only for very specific applications

Using small diameter end mills (1/4" and below) in end mill holders with set screws will have a adverse affect of both surface finish and tool life .

0 Comments

BT, CAT & HSK: What's the Important Differences for my CNC?

5/18/2011

13 Comments

 
edited by Bernard Martin
Steep Taper vs HSK Toolholder spindle contact area gripper force vector Next Gen Tooling Techniks Parlec Big Plus Bernard Martin
Comparison between Steep Taper holders like CAT, BT vs. HSK spindle engagement. Drawbar Gripper Fingers shown in red, Spindle Contact area show in Blue
As machining spindle speeds have increased, steep taper rotary toolholders like BT and CAT systems tend to lose accuracy due to higher centrifugal when running at high RPM's.

​The mouth of the machining center spindle can grow and eventually "bell mouth" with these older style steep taper holders. As it grows the BT and CAT tool is under constant drawbar pull, is pulled up deeper inside the expanded spindle taper. This causes the Z-axis offset to change and can lead the toolholder getting stuck in the spindle.

Major Differences between Steep Taper and HSK

There are several major differences between "steep taper" toolholders, like NMTB, CAT & BT and HSK. 
  • Taper: NMTB, BT and CAT-V holders typically use a 7:24 taper while HSK uses a shallow 1:10 taper
  • Dual Contact: NMTB, CAT and BT only have taper contact with the spindle while HSK is designed for both Taper and Flange contact the spindle
  • Drawbar: CAT and BT holders are held into the spindle by draw bar fingers that wrap around the outsideof the retention knob (pull stud) while with HSK the drawbar fingers are inside the hollow shank.

Dual Contact

One of the big differences between HSK, short taper toolholders is the way the tool fits into the machine tool spindle. HSK uses a simultaneous fit between the short taper and the face of the spindle. The connection is very rigid. HSK provides dual contact between the spindle face and taper while a conventional V-taper only makes taper contact. ​

A standard steep V-taper tool system is designed to make contact along a fixed taper in the machining center spindle. The tool is held firm against this taper by the drawbar inside the spindle of your CNC. When a conventional holder is seated in the CNC spindle, there is approximately a 3 mm gap between the tool holder flange and the spindle face. 
HSK is short for the German words "Hohl Shaft Kegel" or, in English, Hollow Shank Taper because of how the tool is held in the spindle.
Steep Taper vs HSK Flange Contact Comparison
Note how HSK taper (right) is a dual-contact taper. Meaning that it is flush with the gauge line of the spindle face, creating dual contact between the flange of the holder and the spindle face, and the taper itself and the spindle mouth. Dual contact increases tool- holder rigidity for improved performance especially at extended gauge lengths
The HSK contacts the spindle taper and flange on the spindle face to make a solid union in both the axial and radial planes. In operation, HSK tool holders are resistant to axial movement because the face contact prevents the toolholder from being pulled up into the spindle at high speed.
​

Cutting tools generally takes higher radial forces because the flange contact and taper contact combine to resist deflection.

Drawbar

The HSK drawbar "fingers" reach inside the Hollow Shank. One of the big advantages of HSK is the "Merry go Round" effect on the drawbar fingers and how centripetal forces affect it. As the RPM is increased on the HSK toolholder the drawbar fingers actually use become a tighter connection on the inside of the flange and increase the pressure in the spindle connection.
Picture

February 2023 Editors note: New graphics and minor editing and corrections have been made to this article to improve the readability.  The old graphic element has been moved here to the bottom of the screen while everything above has been recreated with higher resolution (non blurry) elements.
13 Comments

    Technical Support Blog

    At Next Generation Tool we often run into many of the same technical questions from different customers. This section should answer many of your most common questions.

    We set up this special blog for the most commonly asked questions and machinist data tables for your easy reference.

    If you've got a question that's not answered here, then just send us a quick note via email or reach one of us on our CONTACTS page here on the website
    email us

    Authorship

    Our technical section is written by several different people. Sometimes, it's from our team here at Next Generation Tooling & at other times it's by one of the innovative manufacturer's we represent in California and Nevada.

    Archives

    March 2023
    February 2023
    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    March 2020
    February 2020
    January 2020
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    March 2019
    January 2019
    September 2018
    June 2018
    April 2018
    February 2018
    December 2017
    November 2017
    October 2017
    August 2017
    June 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    August 2016
    March 2016
    February 2016
    January 2016
    November 2015
    August 2015
    July 2015
    May 2015
    April 2015
    March 2015
    November 2014
    August 2014
    July 2014
    December 2013
    November 2013
    September 2013
    July 2013
    March 2013
    December 2012
    March 2012
    November 2011
    May 2011
    March 2011
    January 2011
    December 2010
    November 2010
    October 2010

    Categories

    All
    5th Axis
    Aerospace
    Allied Machine
    Aluminum Oxide
    Angle Head
    AT3
    Balance
    Bellmouthed Hole
    Big Daishowa
    Big EWA Automatic Boring
    Big Kaiser
    BIG Plus
    Blue Photon
    Bone Screws
    Boring Tool
    Carbide
    Carmex Precision
    CBN
    Centerline Deviation
    Ceramic Black
    Ceramic End Mill
    Ceramic Inserts
    Ceramic Oxide
    Ceramic Whiskered
    Ceramic White
    Chamfer
    Champion Tool Storage
    Chip Breaking
    Circular Saw
    Class Of Fit
    CNC Lathe Tooling
    Collet
    Collet Chuck
    Collet ER
    Composites
    Covid-19
    Deep Hole Boring
    Deep Hole Drilling
    Drilling
    Dual Contact
    Dyna Contact Gage
    Dyna Force Tool
    Dyna Test Bar
    EMO
    End Mill
    Exotap
    Facemill
    Fixturing
    Fretting
    Gaylee Saw
    Hard Turning
    Heimatec
    Helical Interpolation
    Hohl Shaft Kegel
    How Its Made
    HSK A
    HSK-A
    HSK E
    HSK-E
    HSK F
    HSK-F
    HXL Tap
    Hy Pro Tap
    Hy-Pro Tap
    IMTS
    Jergens
    Kurt
    Lang
    Live Tooling
    MA Ford
    Maintenance Cart
    Mapal
    Martindale Saw
    Material: Aluminum
    Material: CFRP
    Material: D2
    Material: Hastelloy
    Material: Inconel
    Material: Peek
    Material: Stone
    Material Titanium
    Material: VC-10
    Metric Course Thread
    Metric Fine Thread
    Metric Thread Chart
    Microconic
    Micromachining
    ModLoc
    Modular
    Mogul Bars
    MPower
    No Go Too Loose
    NTK
    NTK HX5
    On Site Training
    OptiMill-SPM
    OSG Tap & Die
    Oversized Thread
    Parlec
    PCD
    PCT Firm Hold
    Platinum Tooling
    Projection Length
    Pull Studs
    Reamer
    Retention Knob
    Rotary Toolholders
    Rotary Toolholders BT
    Rotary Toolholders CAT
    Rotary Toolholders HSK
    Rotary Toolholders Hydraulic
    Rotary Toolholders Shrink
    Rough Thread
    Runout
    Runout Axial
    Runout Radial
    Saw Selection
    Short Tap Life
    Sialons
    Silicon Nitride
    Smart Damper
    Speed Increaser
    SpeedLoc
    Speroni STP Essntia
    Spindle Mouth Wear
    Swiss
    Swiss Machining
    Taper Wear
    Tapping Feed
    Tapping; Form
    Tapping IPM
    Tapping: Roll
    Tapping RPM
    Tapping Speed
    Tap Tolerance
    Technical Training
    Technicrafts
    Techniks USA
    Thread Milling
    Thread Whirling
    T.I.R.
    Tolerance
    Toolchanger Alignment
    Toolholder Taper
    Tool Presetter
    Torn Thread
    Troubleshooting
    UNC Thread Size
    Undersized Thread
    UNF Thread Size
    Unilock
    Vises
    Workholding

    RSS Feed

Picture

About
Contact
TOOLING
WORKHOLDING
EVENTS
NEWS
TECHNICAL


Established 1995
​

Next Generation Tooling
10240 Cavalletti Drive
Sacramento CA 95829
916.765.4227
Northern California
23 Maxwell Street
Suite B
Lodi, CA 95240
Southern California
22343 La Palma Avenue
​Suite 126
Yorba Linda, CA 92887
© 2023 Next Generation Tooling, LLC. 
All Rights Reserved
Created by Rapid Production Marketing

Find us on Instagram @nextgentool

  • Home
    • Schedule
    • Training
  • About
    • History
    • Contact
  • Territories
    • NorCal & N-NV
    • SoCal & S-NV
    • Mountains
  • Principals
    • Tooling >
      • 2V Industries
      • BIG Daishowa
      • Champion Storage
      • Drill America
      • Jewell Group
      • Mapal
      • Martindale Gaylee
      • OSG Tool
      • Performance Micro Tool
      • Platinum Tooling
      • TechniksUSA
    • Workholding >
      • BIG Daishowa
      • Earth Chain
      • Jergens
      • mPower Workholding
  • Promotions
  • Events
  • News
  • Technical