NEXT GENERATION TOOLING
  • Home
    • Schedule
    • Training
  • About
    • History
    • Contact
  • Territories
    • NorCal & N-NV
    • SoCal & S-NV
    • Mountains
  • Principals
    • Tooling >
      • 2V Industries
      • BIG Daishowa
      • Champion Storage
      • Drill America
      • Jewell Group
      • Mapal
      • Martindale Gaylee
      • OSG Tool
      • Performance Micro Tool
      • Platinum Tooling
      • TechniksUSA
    • Workholding >
      • BIG Daishowa
      • Earth Chain
      • Jergens
      • mPower Workholding
  • Promotions
  • Events
  • News
  • Technical

Adjusting Screws Are Not Just Simple Set Screws

7/6/2022

0 Comments

 
By John Zaya, Product Specialist, BIG DAISHOWA—Americas
BCV40-MEGA13N-Exploded
As the title implies adjusting screws, also known as back-up screws, stop screws and preset screws, are not just a simple set screw. They are a screw with a purpose--three actually.

The first is to provide a fixed stop for a cutting tool to rest against during tool changes. This allows an operator to save time as they do not have to pull out a ruler, setting jig, etc. to reassemble the cutter into a holder.

A secondary purpose of the adjusting screw is to assist the tool holder in keeping the cutter from being pushed up into the holder if the cutting loads increase to the point where the tool may slip up into the holder.

​The third is to offer sealing for coolant-through tools. ​

1. Expected repeatability of cutting tool length

When an old cutter is swapped out and a new one put in its place, the repeatability of this process will vary based on a few parameters such as cleanliness and the OEM cutting tool overall length tolerances.

Cleaning the clamping bore or collet of a holder provides better runout repeatability which should be old news to everyone, but if old coolant and contaminants are not removed, they would get jammed between the end face of the shank and the adjusting screw, affecting the length setting. 

Cutting tool overall length tolerances may also vary from one OEM to another. We have seen them range from ±.3mm to ±.5mm (±.012” to ±.019”). Others may be tighter or looser.

​Most modern machining centers come with tool length offset measurement systems which will provide the final precise gage length of a tool assembly. With the rough position provided by the adjusting screw, the machine operator can continue working and does not need to worry about tool clearances and stick outs. 
BCV50-MEGA1.000DS-4-Exploded

2. Forms of adjusting screws

The clamping mechanism of the holder also affects the length repeatability. Both hydraulic chucks and milling chucks are radial clamping systems, whereas a tapered collet is drawn down into a taper by a threaded nut. This draw down causes the cutter to be drawn down as well.

​For this we have two types of adjusting screws: HMA/HDA solid type and NBA rubberized type. The solid type is a one-piece steel construction part, whereas the rubberized type has a rubber padded conical pocket that absorbs the axial travel of the cutter shank as the collet is clamped. 
BCV50-MEGA1.000DS-4-with-HMA

3. Option for adjustable reduction sleeves for MEGA DS/HMC

Milling chucks also have a second type of adjustment screw option that can be built into the back end of a reduction sleeve. As cutting tool diameters get smaller, the length of the shank also gets shorter.

​As such, the end face of the shank may not reach the HMA adjusting screw when installed it the body of the holder. The AC Type Collet adjuster screws into the back end of the reduction sleeve where the shank the tool can easily be reached. 
BCV50-MEGA1.000DS-4-with-AC Collet 1

4. Warning on holders that cannot support adjusting screws

It is always recommended to consult the tool holder catalog or technical documentation to ensure that a holder can support an adjusting screw. Some holders are very short or have very deep internal features that may not allow for the use of any adjusting screw. In those cases, a depth setting ring or collar on the shank of the cutting tool may be an acceptable alternative. 

Caution should be used on shrink-fit holders. Thermal expansion/contraction occurs in all three axes, so as the body of a shrink-fit holder cools down it will draw the cutter down jamming onto the adjusting screw. This could lead to damage to the screw, the holder or the cutter. 
0 Comments

10 Tips for Improving Tool Holder Performance

8/19/2021

0 Comments

 
10 Tips for Improving cnc rotary ToolHolder Performance
The four critical requirements for tool holders are clamping force, concentricity, rigidity, and balance for high-spindle speeds. When these factors are dialed in just right, there’s nearly no chance of holder error and considerable cost reduction is achieved thanks to longer tool life and reduction of down-time due to tool changes. 

Easier said than done, our experts shared some of their best, quick-hitting advice for top tool holder performance in different situations. 

1. Balance holders as a complete assembly

Long-reach milling has some unique demands; when setting up this type of job, always balance tool holders as a complete assembly. While many tooling providers pre-balance their holders at the factory, it’s often inadequate, especially for long-reach applications.

2. Holder damage can go from bad to worse quickly

 Wear and tear on holders can be costly in the end, but there are ways to protect against it. Inspect and care for your holders. Trauma on a holder or spindle—dings, scratches, gouges, etc.—can magnify quickly. One bad holder can spread its problems like an illness. If you’re seeing disruptions like these on your holders, get them out of the rotation. 

3. The rule of thumb on holder dimensions

Looking for affordable ways to avoid vibration? Start by opting for a holder with a combination of the largest diameter and shortest length possible.

4. Rigidity can harm tapping operations 

What many don’t realize about tapping operations is that a perceived strength of collet chucks—their rigidity—can actually be detrimental. Rigidity does very little to counteract the dramatic thrust loads imposed on the tap and part, exacerbating the already difficult challenge of weathering the stop/reverse and maintaining synchronization.

5. Balancing is crucial to five-axis machining

Five-axis machining introduces a whole new set of tooling challenges. While important in any type of machine, balance may be of most importance in full five-axis work. A well-balanced holder helps ensure the cutting edge of the end mill must be consistently engaged with the material in order to prevent chatter and poor surface finish quality. 

6. Consider spindle speed requirements when choosing between shrink-fit and hydraulic holders 

If you have to choose between shrink-fit and hydraulic holders in a long-reach application, consider the spindle speed required. If a hydraulic chuck exceeds its rated RPM, fluid is pulled away from the holder’s internal gripping gland, causing loss of clamping force. But when used within its recommended operating range, a hydraulic tool holder offers superior runout and repeatability. On average, a good shrink-fit holder has about 0.0003-inch runout, while a hydraulic chuck offers 0.0001 inch or better.

7. Don’t overlook the tool’s effect on holder performance 

The cutting tool affects holding ability more than most machinists and engineers realize:
  1. Polished shanks reduce friction, as does the cleanliness.
  2. Oil and coolants reduce gripping power.
  3. Cutter shank roundness is often assumed to be close enough to perfect to ignore, but in reality, a 25 millionths tolerance is necessary for high-speed performance.

8. Not all dual-contact tooling is the same

Anyone in the market for BIG-PLUS dual-contact tooling should consider this simple statement: Only a licensed supplier of BIG-PLUS has master gages that are traceable to the BIG grand master gages and have the dimensions and tolerances provided to make holders right. Everyone else is guessing and using a sample BIG-PLUS tool holder as their own master gage—a practice that any quality expert will advise against.

Look for the marking: “BIG-PLUS Spindle System-License BIG DAISHOWA SEIKI.”

9. You may have a BIG-PLUS spindle and not even know it

You’d be surprised how often we hear from our certified regrinders or engineers in the field about folks that didn’t realize their machine had a BIG-PLUS spindle—the message can get lost in the supply chain or during the sales process. 

The easiest way to know if an interface is BIG-PLUS is to place a standard tool into the spindle and see how much of a gap there is between the tool holder flange face and spindle face. Without BIG-PLUS, the standard gap should be visible, or about 0.12 in. If it is BIG-PLUS, the gap is half of this amount, or only 0.06 in. These values change depending on 30 taper, 40 taper or 50 taper sizes, but the gap is visibly less than usual.

10. Use positive offsets during holder setup 

It may be how it’s traditionally been done but touching off holder assemblies in each machine to establish negative tool offsets based on the zero-point surface—the vise, machine table, workpiece, etc.—is not the most efficient process. We think the choice is pretty clear: adapting machines to a single presetter so they can receive positive gage lengths is superior to using all types of machine-specific negative offsets. 

This is a change to “the way things have always been done” that can be met with some resistance, but in the grand scheme of things, it’s a relatively small and simple step that makes life much easier. It’s a relatively low-cost opportunity to introduce more standardization of holder setup to the shop floor.

Holders are the bridge between the machine and the part. That’s a lot of pressure—literally and figuratively. It’s important to select, care for and use holders carefully from the day they are purchased until they’re tossed into the recycling bin. 

From collet chucks to coolant inducers, BIG KAISER is North America’s source for standard-bearing tool holders that guarantees high performance. Explore the full lineup. 

0 Comments

INDICATION MARKS ON PULL STUDS ​IS NOT NORMAL

5/25/2021

0 Comments

 
by Bernard Martin
There have been some who claim that drawbar gripper fingers and/or ball marks that appear on retention knob head after several tool changes is normal.
Picture
It is NOT.  
​THAT IS FALSE. 
​

According to Haas CNC, ball or gripper marks on the edge of the pull stud indicate that the drawbar does not open completely.

​If you see these indication marks you should check your drawbar and replace these pull studs immediately.

0 Comments

To Balance, Or Not To Balance? Toolholders, That Is

3/16/2021

0 Comments

 
DEPTH OF CUT COLUMN
by Jack Burley, President and COO at BIG KAISER Precision Tooling Inc.
It’s time for machine tool builders and machining companies to shelf the long-standing ISO 1940-1 standard in favor of ISO 16084:2017. Not only is balancing tools rarely necessary, it can also be risky.
A lot of conflicting information has circulated over the years about balancing tools. As an author of the new standard for calculating permissible static and dynamic residual unbalances of rotating single tools and tool systems – ISO 16084:2017 – allow me to clear some things up and, hopefully, make life a little easier for you.
An argument can be made for balancing almost every tool put in a machine. In the world of rotating tools, small changes to an assembly, like a new cutting tool, collet, nut or retention knob, can put an assembly out of tolerance.

​Therefore, it stands to reason that any unbalance could translate to the part, tooling and/or machine spindle in harmful ways. You’ll hear the case for balancing every single tool based on the 
long-standing ISO 1940-1 standard.
over-balanced-tool-holder
Balancing a toolholder several times causes the toolholder to become excessively modified. It's OVERBALANCED
Since its institution in 1940, the G2.5 balance specification has been widely accepted across the industry; i.e., “it’s how things have always been done.”

However, machines were much slower 80 years ago. Back then, the most advanced machines would have spun larger, heavier tools at a maximum speed of about 4,000 RPM. If you applied the math from those days to today, you’d get unachievable values.

For example, the tolerances defined by G2.5 for tools with a mass of less than 1 pound rated for 40,000 RPM calculates to 0.2 gram millimeters (gm.mm.) of permissible unbalance and eccentricity of 0.6 micron. This isn’t within the repeatable range for any balance machine on the market.

Similarly, application-specific assemblies, for operations like back boring and small, lightweight, high-speed toolholders, can’t be accurately balanced for G2.5.

Machine tool builders rely on an outdated number, too, often basing spindle warranty coverage on using balanced tools at very specific close tolerances. While it’s true that poorly balanced tools run at high speeds wear a spindle faster, decently balanced tools performing common operations won’t wear spindles or tools drastically and deliver the results you’re looking for.
While it’s true that poorly balanced tools run at high speeds wear a spindle faster, decently balanced tools performing common operations won’t wear spindles or tools drastically and deliver the results you’re looking for.

A Little Lesson About Forces

This all begs the question: When do you need to take the time to balance holders? I would argue that tools require balancing only if they’re notably asymmetrical or being used for high-speed fine finishing. Here’s a rule I’ve long followed: If cutting forces exceed centrifugal forces due to unbalance, high-precision balancing isn’t needed because the force required to balance the tool will most likely be less than cutting forces.
In other words, if you’re rough milling with a heavy radial cut, the different forces will start bending the tool. When that happens, the cutting forces and all the feed forces will be substantially higher than whatever the unbalance forces might be. If that’s the case, it’s not that you take the unbalance force and add it to the cutting force and find your adjustment. 
Big Kiaser New Baby Chuck and Mega New Baby Chuck are balanced for High speed machining
Big Kiaser New Baby Chuck and Mega New Baby Chuck are balanced for High speed machining. The Precision collet is guaranteed to produce a maximum runout of only 1 micron at the collet nose.
At that point, aggressive cutting – not unbalance – is going to damage the spindle.  

Unbalanced tools are also blamed for issues that turn out to be misunderstandings about a machine’s spindle. I’ve visited shops with new high-speed spindles that had trouble running micro tools over 15,000 RPM. They rebalanced all the tools on the advice of their machine tool supplier, but to no avail.  It turned out the machine was tuned for higher torque and higher cutting forces. Before going to the effort of balancing toolholders, work with your machine builder to understand where a spindle is tuned.

Not only is balancing tools rarely necessary, it can also be risky. Our inherently asymmetrical fine-boring heads are a good example. Because we balance them at the center, a neutral position of the work range, you lose that balance if you adjust out or in.

To adjust, you’d typically add weight to the light side, which can be a problem for chip evacuation and an obstructor. Or you can remove weight from the heavy side, but that means you have to put some big cuts on the same axis of the insert and insert holder, ultimately weakening the tool.

In longer tool assemblies, common corrections made for static unbalance can also cause issues. It happens when a toolholder is corrected for static unbalance in the wrong plane; i.e., adding or removing weight somewhere on the assembly that’s not 180 degrees across from the area where there’s a surplus or deficit.

​Once the tool is spun at full speed, those weights pull in opposite directions and create a couple unbalance that often worsens the situation.
BIG KIASER Mega ER Balanced holders
All the components of Big Kaiser's Mega ER Grip Series - Body, Collet and Collet nut - Are all balanced for high speed machining

A Cautionary Tale

If you do go down the balancing road, you’d better know where you can modify tools, what’s inside, how deep you can go, and at what angles. Whether you’re adding or removing material on a holder, I highly recommend consulting the tool manufacturer for guidance first.

As a cautionary tale, consider a customer who was attempting to balance a batch of our coolant-fed holders. Based on the balancing machine, the operator drilled ¼-inch holes at the prescribed angle into the body of the holders. Not realizing what was inside, he drilled into cross holes connecting coolant flow and ruined several holders.

Tooling manufacturers are doing their part to avert disasters like this. For most, simple tools like collet chucks or hydraulic chucks are fairly easy to balance during manufacturing. We account for any asymmetrical features while machining and grinding holders and pilot each moving part, ensuring they’ll locate concentrically during assembly. These measures ensure the residual unbalance of the assemblies is very, very low and eliminate the need for balancing.
Auto-balancing boring heads are designed specifically for the high-speed finishing I mentioned earlier, where unbalance force can be greater than cutting force. Our EWB boring heads, for instance, have a small internal counterweight that moves in direct proportion with each adjustment. Because the weight is carbide, it’s three times more dense than the steel in the tool carrier and is maintained inside the head’s symmetrical body.
Picture
Autobalance boring heads, Series 310 EWB, maintain perfect balance throughout the work range due to the integrated counter-balance mechanism. Even at maximum speeds, balanced tools guarantee vibration-free boring, resulting in increased productivity and high precision.
Decades of the same standards have conditioned us to think a certain way about balancing tools. While it seems logical that every tool must be balanced, it’s just not the case: Many issues attributed to unbalance aren’t caused  by unbalance, and the risks of balancing every single tool often aren’t worth the reward.
​
Save your balancing time and resources for high-speed fine finishing. If you do have work where balance is crucial, consider how the tools you buy are balanced and piloted out of the box and/or consult your partners before making any modifications.
0 Comments

Don't Take Your Retention Knobs for Granted

2/16/2021

0 Comments

 
​by Bernard Martin
Retention Knobs are the critical connection between your machine tool and the tool holder and they are the only thing holding a steep taper tool holder in the machine’s spindle.

​Techniks has recently introduced their MegaFORCE retention knobs that have some rather unique features when compared to standard pull studs.  Before delving into the features of the MegaFORCE pull studs, let's review some things that you may not know, or think about, on a daily basis. 
1 Retention knob pull stud casues of failure

Retention knobs go through thousands of tool changes which means that they are subjected to the very high pulling forces from the spindle’s drawbar.

This force can be up to 2300 ft. lbs. for 40 taper toolholders and up to 5000 ft. lbs. for 50 taper toolholders.
​According to Haas, you should expect a service life of about 6000-8000 hours for a retention knob.  

​Most all rotary toolholder manufacturers state that you should be replacing your pull studs at least every three years.

However, if you're running multiple shifts, 24-7, making lots of tool changes, making very heavy cuts with long reach or heavy cutting tools, and/or have ball lock style grippers instead of collet type grippers used on the retention knob, you will probably need to replace your studs at least every six months.

Given the spindle speeds that we are running at to remain competitive, retention knobs are not an item that you want to take a chance on breaking.  I can tell you firsthand that 5 pound toolholder with a drill in it flying out of the spindle at 23,000 RPM is not something you want to experience. 

METAL FATIGUE: WHY THEY FAIL

Pull studs encounter catastrophic failure as a result of metal fatigue. The metal fatigue can be caused by a number of reasons including poor choice of base material, engineering design, machining process, poor heat treatment, and, sometimes, they have just met or exceeded their service life. We're going to dig into each of these reasons below but first let's look at some threading fundamentals.
The threads on your retention knob will stretch slightly when load is applied and the loading borne on each thread is different.

When you apply a tensile load on a threaded pull stud, the first thread at the point of connection sees the highest percentage of the load.
Percentage of Load on a Retention Knob Thread
Percentage of Load on each thread of a Retention Knob.
The load on each subsequent thread decreases from there, as show in the table. Any threads beyond the first six are purely cosmetic and provide no mechanical advantage. ​

Additional threads beyond the sixth thread will not further distribute the load and will not make the connection any stronger. 

That is why the length of engagement of the thread on a pull stud is generally limited to approximately one to one & a half nominal diameter. After that, there is no appreciable increase in strength. Once the applied load has exceeded the first thread's capacity, it will fail and subsequently cause the remaining threads to fail in succession.

​RETENTION KNOB DESIGN

Repetitive cycles of loading and unloading subject the retention knob to stress that can cause fatigue and cracking at weak areas of the pull stud.

What are the weak areas of a standard retention knob?  ​
For the same reason we put corner radiuses on end mills, sharp corners are a common area of failure for any mechanical device.

​The same holds true with your pull studs:  The sharp angles on the head of the retention knob and at the minor diameter of the threads are common locations of catastrophic material failure.
Retention Knob Metal Fatigue
These are the two weakest points of any retention knob.
The most common failure point for a retention knob is at the top of the first thread and the underside of the pull stud where the grippers or ball bearings of the drawbar engage and draw the toolholder into the spindle.

Remember, bigger Radii are stronger than sharp corners. ​More on that soon.
Styles of Retention Knob for Rotary Toolholders
Styles of MegaFORCE Retention Knobs

MATERIAL

Not all retention knobs are made from the same material, however, material alone does not make for a superior retention knob. Careful attention to design and manufacturing methods must be followed to avoid introducing potential areas of failure.

Techniks MegaFORCE retention knobs are made from 8620H. AISI 8620 is a hardenable chromium, molybdenum, nickel low alloy steel often used for carburizing to develop a case-hardened part. This case-hardening will result in good wear characteristics.  8620 has high hardenability, no tempering brittleness, good weldability, little tendency to form a cold crack, good maintainability, and cold strain plasticity.

There are some companies making retention knobs from 9310. The main difference is the lower carbon content in the 9310. 9310 has a tad more Chromium, while 8620 has a tad more nickel.  Ultimate Tensile Strength (UTS) is the force at which a material will break. The UTS of 8620H is 650 Mpa (megapascals: a measure of force). The UTS of 9310H is 820 Mpa. So, 9310H does have a UTS that is 26% greater than 8620H.

​That said, Techniks chose 8620 as their material of choice because of the higher nickel content.  Nickel tends to work harden more readily and age harden over time which brings the core hardness higher as the pull stud gets older. The work hardening property of 8620 makes it ideally suited for cold forming of threads on the MegaFORCE retention knobs.

​It should be noted that some companies are using H13. H13 shares 93% of their average alloy composition in common with 9310. 

ROLLED THREADS VS. CUT THREADS

5. Cut thread vs rolled thread retention knob
A cut thread, image 1, has a higher coefficient of friction due the the cutting process, while a roll formed thread, image 2, has a lower coefficient of friction which means that it engages deeper into the toolholder bore when subjected to the same torque. You will notice that Cutting threads tears at the material and creates small fractures that become points of weakness that can lead to failure. Rolled threads have burnished roots and crests that are smooth and absent of the fractures common in cut threads.
Rolled threads produce a radiused root and crest of the thread and exhibit between a 40% and 300% increase in tensile strength over a cut thread. The Techniks MegaFORCE retention knobs feature rolled threads that improve the strength of the knob by 40%.  
6. LMT Fette - Thread rolling with F2 Rolling head on CNC lathe
Shown here is a Fette head cold forming a thread. Note how the three roller forms center and maintain near perfect concentricity of the pull stud shaft.
In cold forming, the thread rolls are pressed into the component, stressing the material beyond its yield point. This causes the component material to be deformed plastically, and thus, permanently.

There are three rollers in the typical thread rolling head that maintain better concentricity by default than single point cutting of the threads.

Also, unlike thread cutting, the grain structure of the material is displaced not removed.
Rolled threads produce grain flows that follow the contour of the threads making for a stronger thread at the pitch diameter which is the highest point of wear. 

The cold forming process also cold works the material which takes advantage of the nickel work hardening properties of 8620.
7. Fette Turning Concepts Thread Rolling Magnaflux
Photo courtesy Mike Roden at Fette Tool. www.turningconcepts.com
By comparison, cut threads interrupt the grain flow creating weak points.

MEGAFORCE GEOMETRIC DESIGN

MegaForce Retention Knob features vs standard pull stud
Overall Length
There are some claims that a longer projection engages threads deeper in the tool holder preventing taper swelling. While a deeper thread engagement can help prevent taper swelling, applying proper torque to the retention knob is an effective way to reduce taper swelling.

An over-tightened retention knob may still cause taper swelling regardless of how deep it engages the threads of the tool holder. Additionally, the longer undercut section above the threads presents a weak point in the retention knob.
Blended Radii
With the new Techniks MegaFORCE pull studs, stress risers of sharp angles have been eliminated through the blended radii on the neck where the gripper engages under the head of the pull stud.
9. Techniks MegaFORCE Pull Studs
Ground Pilot
There is a ground pilot, underneath the flange, which provides greater stability. The pilot means the center line of the tool holder and pull stud are perfectly aligned.

Magnetic Particle Tested
Each Techniks MegaFORCE retention knob is magnetic particle tested to ensure material integrity and physical soundness. MegaFORCE retention knobs are tested at 2.5X the pulling forces of the drawbar.
MegaFORCE Technical Specs
  • Material: SAE8620
  • All knobs are case carbrized, hardened, and tempered to:
    • Case depth: 0.025” – 0.030”
    • Surface hardness: HRc 56-60
    • Core hardness: HRc 44 minimum
Torque Specs
The following are the guidelines for torquing your pull studs according to Techniks.
  • BT 30 36 ft. lbs.
  • ISO 30 - 36 ft. lbs.
  • 40 taper - 76 ft. lbs.
  • 50 Taper - 100 ft. lbs.

RETENTION KNOB BEST PRACTICES

In order to maximize the life of your retention knob and prevent catastrophic failure here are some technical tips to keep your shop productive and safe.
  • Regularly inspect retention knobs for signs of wear. Wear may appear as dimples or grooves under the head or visible corrosion anywhere on the retention knob. 
Picture
  • If the retention knob demonstrates any signs of wear replace it immediately
  • Make sure to properly torque the retention knob to the manufacturer’s specifications. Use a torque wrench and retention knob adapter to ensure proper torque. 
  • Overtightening can overly stress the retention knob leading to premature failure and can cause the tool holder taper to swell leading to a poor fit between the machine spindle and the tool holder.
  • Apply a light coat of grease to the retention knob MONTHLY to lubricate the drawbar. If you use through-spindle coolant (TSC), apply grease to the retention knobs WEEKLY.

Special thanks for Greg Webb at Techniks and Mike Roden from Fette Tools/ Turning Concepts, for providing technical insights. 
0 Comments

NEW ShrinkLOCKED Technology for Shrink Fit Holders to Improve Gripping Power.

8/19/2020

3 Comments

 
by, Bernard Martin
Techniks Shrink Locked Rotary Toolholder
As carbide end mills gain higher and higher speeds and metal removal rates there has also been a trend by round tool manufacturers to tighten up the tolerances on both the cutting diameter and the shank diameter to improve concentricity. At the same time, shrink fit holders have become more and more popular because they hold a tighter concentricity as well.  To achieve this both the shank and the bore now have similar surface finishes and this has led to a problem  The tools pull out in the cut.

Shrink fit holders are the most accurate for TIR as the toolholder engages completely around round shank tools with a bore tolerance of -0.0001" to  -0.0003".  As high performance end mills have tightened shank tolerances to the same range of -0.0001" to  -0.0003" they have used finer and finer grain grinding wheels which give the shanks a 'shiny' appearance. 

Shiny means that the superfinished shank has a lower coefficient of friction. So, although the TIR is tighter, the shank is more "slippery".   End mills traditionally had surface finish of about 8 μin on the tool shank. But that's changed.  It's been recommended that tool shanks used in shrink fit holders should not have a finish finer than 16 μin. for optimum holding power, but tell that to the guy who just superfinished the end mill to a super cocncentric tolerance that you don't want it looking that good.

Everyone knows that the last thing you want is for the end mill to slip in the middle of a heavy cut or on the finishing pass of a high tolerance part.  These 'hi performance' end mills, often times have higher helix angles which are great for ejecting chips but also create a higher pull out force on that slippery shank. And reducing the helix angle is not the answer.

We  already know that the gripping pressure is a function of the interference between the tool shank  and the shrink fit toolholder bore. Most shrink fit holders have a already bore surface finish of between 12 μin. and 16 μin.  So they are ground to a very high tolerance and have about the same surface finish as the toolholder shank.

End mill manufacturers and machinist have tried a variety of methods over the years to stop the tools from pulling out. This has ranged from grit blasting the shank to rubbing chalk on the shank, but most everyone in the industry has felt that the problem really needs to be addressed by the longer life toolholder rather than the replaceable cutting tool.

That's the problem that Techniks wanted to address. Techniks claims that their "proprietary non-slip TTG594 compound virtually fuses the tool shank with the shrink fit toolholder."

ShrinkLOCKED Toolholders eliminate cutting tool pull-out and provide 4X the friction drive force compared to un-treated shrink holders.
  • No modifications to your tool holder required.
  • Increase productivity with higher feed rates.
  • No impact on concentricity.
Shrinklocked Shrink Fit diagram
It’s not just a rougher bore finish that enhances the holding power. TTG-594 is a compound that has a much higher Brinell hardness than carbide so it can “bite” into the tool shank. But this does not affect the ability to perform tool changes.

Techniks arrived at their 4x the holding power comes from torsion testing vs. a standard shrink fit toolholder. They used a ¾” carbide gage pin in a standard holder and found the torque at which the tool will spin in the bore.

They then tested the ShrinkLOCKED holder using the same test.

According to Greg Webb, at Techniks,
"We actually could not find the point at which the tool would spin in the ShrinkLOCKED holder as we broke the carbide gage pins at 4x+ times the torque of the standard holder. The holding power is greater, we just have not found a way to measure this, so we kept our claims conservative at 4x."
Shrink-locked Techniks
3 Comments

The BIG-PLUS Difference

1/22/2020

0 Comments

 
The Big Plus Difference
Spindles and tool holders are in a constant battle with the forces of nature, with this battle becoming more and more difficult with heavier cuts and longer projections. Chattering and deflection have always been the bane of machinists’ existence, so much so that the sight of a long and slender toolholder will immediately cause goosebumps.

If you understand why a long tool holder behaves the way it does, you’ll know that there are ways to fight back against this bending. Every machinist knows that short and stubby holders are more resistant to deflection than long and slender holders. You’ve also probably heard that, if possible, you’ll want most of your cutting forces to be axial rather than radial.

Not only does this fight chatter in operations like boring, but your spindle also is better equipped to handle loads in this axis. However, these options aren’t always going to be on the table, especially in unavoidable long-reach situations and many milling operations.

In this constant battle with tool deflection, much time and effort has been spent designing shorter holders, stiffer tools, and clever anti-vibration geometry and materials. But oftentimes, the body diameter(s) of the holder can be overlooked as a means of increasing rigidity, especially in situations where it is all you have to work with. This is a serious shame, as you’ll soon discover.

The concept of dual-contact technology has been around for years, existing in many different forms but always with the same goal of capitalizing on this untapped potential of rigidity. For those who don’t know, dual contact refers to the shank contacting the spindle taper and the spindle face simultaneously.

Oftentimes, the solution involved ex post facto alterations to the spindle or tool holder, such as using ground spacers or shims to close the gap, for example. In other words, there was no standard solution, and if you wanted dual contact, you would have to be prepared to spend time and money either buying modified tool holders or modifying them yourself to adapt them to your spindle.

BIG-PLUS emerged as a solution to this issue. Essentially, both the spindle and tool holder were ground to precise specifications so that they closed the gap between spindle face and flange in unison (while depending on very small elastic deformation in the spindle). What this meant is that operators were able to confidently switch BIG-PLUS tooling in and out of a BIG-PLUS spindle and achieve guaranteed dual contact.

Not only that, but standard tooling could still be used in a BIG-PLUS spindle if necessary, and vice versa.

Though not technically an international standard, it’s been adopted by many machine tool builders because of the clear performance improvements and simplicity. In fact, BIG-PLUS spindles come standard on more machines than you would think. We often come across operators that have machines with BIG-PLUS spindles and don’t even realize it.
big-plus flange vs conventional toolholder engagement
How exactly does dual contact help with tool rigidity? The torque (or moment) exerted by the cutting forces is maximized at the point where the holder and spindle meet, the base of the tool holder. With standard CAT40 tool holders, this would be the gage line diameter. When the holder contacts the spindle face via BIG-PLUS, the effective diameter would be the larger diameter of the v-flange, since this is the new anchoring point of the holder and spindle. So, you are beefing up the diameter at the point where the reactionary force is greatest.

It’s not too much of a leap to conclude that a larger effective diameter will give you more rigidity. That being said, you may still be asking yourself: does such a seemingly small increase in diameter really make a difference? To understand the effect of BIG-PLUS, you must understand the physics behind it.

Imagine a simple scenario in which a tool holder is represented by a cylindrical bar that is fixed at one end and free-floating at the other. In other words, a cantilever beam. If you think about it, this is essentially what a tool holder becomes once it’s secure in the spindle. Now, let’s introduce a radial force F that acts downward at the suspended end of the bar, which represents a cutting force you would encounter when milling or boring, for example. The bar, as you might expect, will want to bend downward. It’s similar to how a diving board bends when someone stands at the end, though less exaggerated.
Big Plus deflection drawing
It’s possible to predict the amount of deflection (or inversely, bending stiffness) at the end of this hypothetical bar if you know its length, diameter and material. The expression below represents the stiffness k at the end of the bar where d=diameter, L=Length and E=Modulus of Elasticity
(this depends on the bar material). The greater the value of k, the stiffer (or more rigid) our bar will be.
Picture
I won’t ask you to do any math here, I just want you to look at the equation. We can see that increasing d will increase the value of k, while increasing L will decrease the value of k, since it’s in the denominator of the equation. This certainly makes sense if you think about it: a short and squat bar (large d, small L) will be more rigid than a long and slender bar (small d, large L). 

Something interesting to note is that d is raised to the 4th power, while L is only raised to the 3rd power. Diameter affects rigidity an entire order of magnitude more than the length does. This is where the power of BIG-PLUS comes from and is why a small increase in diameter can have such a powerful effect on performance.
Big Plus Strict gage control surface finish
For a CAT40 tool holder, the gage line diameter is Ø44.45 mm and the flange diameter is Ø63.5 mm. Let’s imagine two bars of identical length and material, so L and E remain unchanged. One bar has a diameter of Ø44.45 mm (standard CAT40) and the other has Ø63.5 mm (BIG-PLUS CAT40).

If you were to plug these values into the above equation for comparison, you would find that the BIG-PLUS holder results in a k value that is around 4 times greater than the standard bar. Based on this comparison, you could say that a BIG-PLUS holder is 4 times as rigid as an identical standard CAT40 holder, because it is 4 times as resistant to deflection.

Think of the tool life and surface finish improvements you would see with a tool that is 4 times more rigid, not to mention the reduction in fretting and potential for reduced cycle time. You would get similar results if you were to make the same comparison for CAT50, BT40, BT30, etc.

Big Plus Comparison of Deflection Chart
If you’re still not convinced, we can also compare the rigidity in this way: Let’s say there is a Ø63.5 mm BIG-PLUS CAT40 bar of some arbitrary length. One of our more common gage lengths is 105 mm, or just over 4 inches, so let’s use it as an example. 

You’re probably wondering, at what length would a comparable standard CAT40 holder have an equal stiffness? If we take our stiffness expression and set it equal to itself (one side representing BIG-PLUS, the other non BIG-PLUS), we can plug in this BIG-PLUS holder length and our known diameters to find our unknown non-BIG PLUS length:
Big Plus Stiffness Formula
What does this mean? A BIG-PLUS holder of around 4 inches or 105 mm in length will have equal rigidity to a standard CAT40 holder of around 2.5 inches or 65 mm in length. Any experienced machinist will know quite well the difference in rigidity between a 4-inch long holder and a 2.5-inch long holder.

If this is true, we can say that implementing BIG-PLUS is equivalent to a 40% reduction in length in terms of rigidity. Theoretically, a BIG-PLUS tool holder will behave like a standard tool holder that is nearly half of its length! 

Obviously, we’ve used simple and idealized cases here to represent the complicated and dynamic world of metal cutting. Tool holders, of course, don’t have uniform body diameters or materials and the cutting forces usually aren’t acting in one direction in a constant and predictable way. If our holder necks up and down to different body diameters along its length, which is realistically what happens, each of these sections would be its own microcosm of “beam” that would influence the overall behavior (at that point, finite element analysis on a computer becomes the only practical way to predict behavior). 

So, will the advantage of BIG-PLUS really be as dramatic as our hand-calculated classical beam theory suggests? Probably not, but it depends on the tool holder/tool. Most cases will follow our simple model quite closely in practice; others not so much. If nothing else, we’ve demonstrated how dramatically the flange contact of BIG-PLUS can influence rigidity, at least in a purely mathematical sense. 

As if you needed any more reasons to be on the BIG-PLUS bandwagon besides increased rigidity, you will also eliminate Z-axis movement at high speeds, improve ATC repeatability and decrease fretting. This means that you will take heavier cuts, scrap less parts, and increase tool and spindle life.
BIG-PLUS isn’t a new idea by any means, but with a proven track record of tackling tough jobs, it’s hard to imagine working in a modern machine shop and not taking advantage of what it has to offer.

If you’re still not convinced, we can also compare the rigidity in this way: Let’s say there is a Ø63.5 mm BIG-PLUS CAT40 bar of some arbitrary length. One of our more common gage lengths is 105 mm, or just over 4 inches, so let’s use it as an example. 

You’re probably wondering, at what length would a comparable standard CAT40 holder have an equal stiffness? If we take our stiffness expression and set it equal to itself (one side representing BIG-PLUS, the other non BIG-PLUS), we can plug in this BIG-PLUS holder length and our known diameters to find our unknown non-BIG PLUS length:
0 Comments

Six Factors in Selecting Hydraulic or Shrink-Fit Holders

9/10/2019

1 Comment

 
by Alan Miller  
Originally published in Fabricating & Metalworking  Oct 24, 2018

Shrink-fit and hydraulic holders are both useful in low clearance, tight work envelopes found in moldmaking and multi-axis machining applications. When deciding which one to use, their differences will guide your choice. Here are some of the fundamental contrasts to help you decide which holder type is best for your work.
Big Kaiser Hydraulic holder
Hydraulic holders (shown here) and shrink-fit holders share a middle-of-the-road gripping strength: about half that of a milling chuck and about double that of collet chucks. The superior vibration control of hydraulic chucks makes them good choices for finish milling, reaming and drilling work. While they may not be as precise, the rigidity of shrink-fit holders makes them effective in moderate to heavy milling work where clearance is an issue, and in many high speed scenarios.
Shrink-fit and hydraulic holders are especially useful in low clearance, tight work envelopes because of their relatively slim design. This has made them effective in moldmaking applications and more coveted since the widespread adoption of multi-axis machinery. Hydraulic and shrink-fit holders also share a middle-of-the-road gripping strength: about half that of a milling chuck and about double that of collet chucks.

These similarities are why we’re taking the time to compare the two. When it comes to deciding between one or the other, it’s the differences that will guide the choice. So let’s dig into some of the fundamental contrasts that may help you decide which holder type is best for you and your work.

Initial Investment

When it comes to the holders themselves, shrink-fit is generally a slightly lower cost. The delicate hydraulic clamping systems built into the holders add cost when compared to the simple and solid bodies of shrink-fit holders. Where the major difference lies is in the equipment needed to heat the shrink-fit holders.

When heated to the proper temperature, the resulting growth of the ID allows the tool to be slipped into the bore. Once cooled, the holder expands, gripping the tool. This process, especially the induction heating, involves cost. Shrink-fit heating systems start at around $5,000 and go up from there. They also require fairly significant power, adding a slight ongoing expense.

Maintenance

If you want to see a full return on your shrink-fit investment and then some, maintenance is critical. When dealing with temperatures that can approach 600 deg F, the stakes are heightened.

This is why we recommend using dry cutting tools without oil on them. From there, diligent attention must be paid to the cleanliness of holder bores and tool shanks. Any contamination will be baked onto the metal and progressively deteriorate performance.

When it comes to hydraulic chucks, maintenance is straightforward as long as the hydraulic chamber stays sealed. To ensure the hydraulic system performs consistently, we recommend using test pins to gauge its force over time.

Training, Handling and Safety

Hydraulic chucks are infinitely simple. A turn of a wrench locks the tool in place. When it comes to shrink-fit systems, there are a few more factors to consider when getting the team up to speed, including safety considerations. Aside from the operators who handle the tooling and heating system directly, others on the floor need to be made aware of the risk of burns.

Heating stations are usually benchtop arrangements because of the power requirements. This means hot metal will need to be transported across the floor in one form or another. Another training consideration is that tools can be overcooked, so to speak. This will cause permanent damage that harms performance. Operators must understand, know how to prevent and diagnose this.

Setup

As mentioned earlier, hydraulic chucks use a simple wrench to lock in the tool. Tools can also be swapped at the machine or offline. When it comes to shrink-fit setups, they must be done exclusively offline where the heating and cooling can be powered. Most heating cycles can be as fast as 15 seconds.

Cooling can take several minutes, even with assistance like air. Having extra compatible holders is a viable solution to speed concerns, if you’re comfortable with the additional investment. All that being said, there are significant time-saving opportunities to be found setting up tools offline. We believe strongly in tool measuring systems and recommend offline setup when and where applicable.

Vibration

Hydraulic chucks have two specific advantages in terms of vibration and accuracy. The first is that shrink-fit tools and holders are dependent on the heating and cooling processes being consistent. This brings us back to the maintenance section above; the slightest imperfection in the holder bore, not to mention the natural inconsistencies in the heating and cooling processes, can be multiplied at the cutting edge in the form of vibration or runout.

There is also the chance of some variation from operator to operator. Hydraulic chucks are less reliant on these variables and their production is imminently consistent. Once a master bore is established during manufacturing and assembly, it’s a repeatable process over thousands of cycles.

This translates to consistent clamping tolerances and forces over the life of the holder. The second advantage is the natural damping characteristics that hydraulics provide. That’s not to say shrink-fit holders are ineffective in terms of vibration management. Their runout is five times better than side-lock holders.

Roughing and Finishing

That brings us to some application talk. While they may not be as precise, shrink-fit holders’ rigidity makes them effective in moderate to heavy milling work where clearance is an issue, and in many high speed scenarios. The superior vibration control of hydraulic chucks makes them good choices for finish milling, reaming and drilling work.

Roughing and Finishing

Up to this point, you may think I’m an advocate of hydraulic chucks over shrink-fit holders, but that’s not the case. We offer both products. In fact, shrink-fit holders are fundamentally the perfect tool holder. From an engineering perspective, there are no moving parts, no additional components, they use the properties of the holder itself to grip the tool and they’re symmetrically round. But as we all know, a manufacturing floor is not a perfect environment. Variables must be considered when choosing equipment.

Should the choice between hydraulic chucks and shrink-fit holders come up, the factors discussed here will help guide your choice.
1 Comment

    Technical Support Blog

    At Next Generation Tool we often run into many of the same technical questions from different customers. This section should answer many of your most common questions.

    We set up this special blog for the most commonly asked questions and machinist data tables for your easy reference.

    If you've got a question that's not answered here, then just send us a quick note via email or reach one of us on our CONTACTS page here on the website
    email us

    Authorship

    Our technical section is written by several different people. Sometimes, it's from our team here at Next Generation Tooling & at other times it's by one of the innovative manufacturer's we represent in California and Nevada.

    Archives

    March 2023
    February 2023
    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    March 2020
    February 2020
    January 2020
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    March 2019
    January 2019
    September 2018
    June 2018
    April 2018
    February 2018
    December 2017
    November 2017
    October 2017
    August 2017
    June 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    August 2016
    March 2016
    February 2016
    January 2016
    November 2015
    August 2015
    July 2015
    May 2015
    April 2015
    March 2015
    November 2014
    August 2014
    July 2014
    December 2013
    November 2013
    September 2013
    July 2013
    March 2013
    December 2012
    March 2012
    November 2011
    May 2011
    March 2011
    January 2011
    December 2010
    November 2010
    October 2010

    Categories

    All
    5th Axis
    Aerospace
    Allied Machine
    Aluminum Oxide
    Angle Head
    AT3
    Balance
    Bellmouthed Hole
    Big Daishowa
    Big EWA Automatic Boring
    Big Kaiser
    BIG Plus
    Blue Photon
    Bone Screws
    Boring Tool
    Carbide
    Carmex Precision
    CBN
    Centerline Deviation
    Ceramic Black
    Ceramic End Mill
    Ceramic Inserts
    Ceramic Oxide
    Ceramic Whiskered
    Ceramic White
    Chamfer
    Champion Tool Storage
    Chip Breaking
    Circular Saw
    Class Of Fit
    CNC Lathe Tooling
    Collet
    Collet Chuck
    Collet ER
    Composites
    Covid-19
    Deep Hole Boring
    Deep Hole Drilling
    Drilling
    Dual Contact
    Dyna Contact Gage
    Dyna Force Tool
    Dyna Test Bar
    EMO
    End Mill
    Exotap
    Facemill
    Fixturing
    Fretting
    Gaylee Saw
    Hard Turning
    Heimatec
    Helical Interpolation
    Hohl Shaft Kegel
    How Its Made
    HSK A
    HSK-A
    HSK E
    HSK-E
    HSK F
    HSK-F
    HXL Tap
    Hy Pro Tap
    Hy-Pro Tap
    IMTS
    Jergens
    Kurt
    Lang
    Live Tooling
    MA Ford
    Maintenance Cart
    Mapal
    Martindale Saw
    Material: Aluminum
    Material: CFRP
    Material: D2
    Material: Hastelloy
    Material: Inconel
    Material: Peek
    Material: Stone
    Material Titanium
    Material: VC-10
    Metric Course Thread
    Metric Fine Thread
    Metric Thread Chart
    Microconic
    Micromachining
    ModLoc
    Modular
    Mogul Bars
    MPower
    No Go Too Loose
    NTK
    NTK HX5
    On Site Training
    OptiMill-SPM
    OSG Tap & Die
    Oversized Thread
    Parlec
    PCD
    PCT Firm Hold
    Platinum Tooling
    Projection Length
    Pull Studs
    Reamer
    Retention Knob
    Rotary Toolholders
    Rotary Toolholders BT
    Rotary Toolholders CAT
    Rotary Toolholders HSK
    Rotary Toolholders Hydraulic
    Rotary Toolholders Shrink
    Rough Thread
    Runout
    Runout Axial
    Runout Radial
    Saw Selection
    Short Tap Life
    Sialons
    Silicon Nitride
    Smart Damper
    Speed Increaser
    SpeedLoc
    Speroni STP Essntia
    Spindle Mouth Wear
    Swiss
    Swiss Machining
    Taper Wear
    Tapping Feed
    Tapping; Form
    Tapping IPM
    Tapping: Roll
    Tapping RPM
    Tapping Speed
    Tap Tolerance
    Technical Training
    Technicrafts
    Techniks USA
    Thread Milling
    Thread Whirling
    T.I.R.
    Tolerance
    Toolchanger Alignment
    Toolholder Taper
    Tool Presetter
    Torn Thread
    Troubleshooting
    UNC Thread Size
    Undersized Thread
    UNF Thread Size
    Unilock
    Vises
    Workholding

    RSS Feed

Picture

About
Contact
TOOLING
WORKHOLDING
EVENTS
NEWS
TECHNICAL


Established 1995
​

Next Generation Tooling
10240 Cavalletti Drive
Sacramento CA 95829
916.765.4227
Northern California
23 Maxwell Street
Suite B
Lodi, CA 95240
Southern California
22343 La Palma Avenue
​Suite 126
Yorba Linda, CA 92887
© 2023 Next Generation Tooling, LLC. 
All Rights Reserved
Created by Rapid Production Marketing

Find us on Instagram @nextgentool

  • Home
    • Schedule
    • Training
  • About
    • History
    • Contact
  • Territories
    • NorCal & N-NV
    • SoCal & S-NV
    • Mountains
  • Principals
    • Tooling >
      • 2V Industries
      • BIG Daishowa
      • Champion Storage
      • Drill America
      • Jewell Group
      • Mapal
      • Martindale Gaylee
      • OSG Tool
      • Performance Micro Tool
      • Platinum Tooling
      • TechniksUSA
    • Workholding >
      • BIG Daishowa
      • Earth Chain
      • Jergens
      • mPower Workholding
  • Promotions
  • Events
  • News
  • Technical