NEXT GENERATION TOOLING
  • Home
    • Schedule
    • Training
  • About
    • History
    • Contact
  • Territories
    • NorCal & N-NV
    • SoCal & S-NV
    • Mountains
  • Principals
    • Tooling >
      • 2V Industries
      • BIG Daishowa
      • Champion Storage
      • Drill America
      • Jewell Group
      • Mapal
      • Martindale Gaylee
      • OSG Tool
      • Performance Micro Tool
      • Platinum Tooling
      • TechniksUSA
    • Workholding >
      • BIG Daishowa
      • Earth Chain
      • Jergens
      • mPower Workholding
  • Promotions
  • Events
  • News
  • Technical

10 Tips for Improving Tool Holder Performance

8/19/2021

0 Comments

 
10 Tips for Improving cnc rotary ToolHolder Performance
The four critical requirements for tool holders are clamping force, concentricity, rigidity, and balance for high-spindle speeds. When these factors are dialed in just right, there’s nearly no chance of holder error and considerable cost reduction is achieved thanks to longer tool life and reduction of down-time due to tool changes. 

Easier said than done, our experts shared some of their best, quick-hitting advice for top tool holder performance in different situations. 

1. Balance holders as a complete assembly

Long-reach milling has some unique demands; when setting up this type of job, always balance tool holders as a complete assembly. While many tooling providers pre-balance their holders at the factory, it’s often inadequate, especially for long-reach applications.

2. Holder damage can go from bad to worse quickly

 Wear and tear on holders can be costly in the end, but there are ways to protect against it. Inspect and care for your holders. Trauma on a holder or spindle—dings, scratches, gouges, etc.—can magnify quickly. One bad holder can spread its problems like an illness. If you’re seeing disruptions like these on your holders, get them out of the rotation. 

3. The rule of thumb on holder dimensions

Looking for affordable ways to avoid vibration? Start by opting for a holder with a combination of the largest diameter and shortest length possible.

4. Rigidity can harm tapping operations 

What many don’t realize about tapping operations is that a perceived strength of collet chucks—their rigidity—can actually be detrimental. Rigidity does very little to counteract the dramatic thrust loads imposed on the tap and part, exacerbating the already difficult challenge of weathering the stop/reverse and maintaining synchronization.

5. Balancing is crucial to five-axis machining

Five-axis machining introduces a whole new set of tooling challenges. While important in any type of machine, balance may be of most importance in full five-axis work. A well-balanced holder helps ensure the cutting edge of the end mill must be consistently engaged with the material in order to prevent chatter and poor surface finish quality. 

6. Consider spindle speed requirements when choosing between shrink-fit and hydraulic holders 

If you have to choose between shrink-fit and hydraulic holders in a long-reach application, consider the spindle speed required. If a hydraulic chuck exceeds its rated RPM, fluid is pulled away from the holder’s internal gripping gland, causing loss of clamping force. But when used within its recommended operating range, a hydraulic tool holder offers superior runout and repeatability. On average, a good shrink-fit holder has about 0.0003-inch runout, while a hydraulic chuck offers 0.0001 inch or better.

7. Don’t overlook the tool’s effect on holder performance 

The cutting tool affects holding ability more than most machinists and engineers realize:
  1. Polished shanks reduce friction, as does the cleanliness.
  2. Oil and coolants reduce gripping power.
  3. Cutter shank roundness is often assumed to be close enough to perfect to ignore, but in reality, a 25 millionths tolerance is necessary for high-speed performance.

8. Not all dual-contact tooling is the same

Anyone in the market for BIG-PLUS dual-contact tooling should consider this simple statement: Only a licensed supplier of BIG-PLUS has master gages that are traceable to the BIG grand master gages and have the dimensions and tolerances provided to make holders right. Everyone else is guessing and using a sample BIG-PLUS tool holder as their own master gage—a practice that any quality expert will advise against.

Look for the marking: “BIG-PLUS Spindle System-License BIG DAISHOWA SEIKI.”

9. You may have a BIG-PLUS spindle and not even know it

You’d be surprised how often we hear from our certified regrinders or engineers in the field about folks that didn’t realize their machine had a BIG-PLUS spindle—the message can get lost in the supply chain or during the sales process. 

The easiest way to know if an interface is BIG-PLUS is to place a standard tool into the spindle and see how much of a gap there is between the tool holder flange face and spindle face. Without BIG-PLUS, the standard gap should be visible, or about 0.12 in. If it is BIG-PLUS, the gap is half of this amount, or only 0.06 in. These values change depending on 30 taper, 40 taper or 50 taper sizes, but the gap is visibly less than usual.

10. Use positive offsets during holder setup 

It may be how it’s traditionally been done but touching off holder assemblies in each machine to establish negative tool offsets based on the zero-point surface—the vise, machine table, workpiece, etc.—is not the most efficient process. We think the choice is pretty clear: adapting machines to a single presetter so they can receive positive gage lengths is superior to using all types of machine-specific negative offsets. 

This is a change to “the way things have always been done” that can be met with some resistance, but in the grand scheme of things, it’s a relatively small and simple step that makes life much easier. It’s a relatively low-cost opportunity to introduce more standardization of holder setup to the shop floor.

Holders are the bridge between the machine and the part. That’s a lot of pressure—literally and figuratively. It’s important to select, care for and use holders carefully from the day they are purchased until they’re tossed into the recycling bin. 

From collet chucks to coolant inducers, BIG KAISER is North America’s source for standard-bearing tool holders that guarantees high performance. Explore the full lineup. 

0 Comments

Spindle Maintenance Tips to Ensure Top Machining Performance

11/11/2020

2 Comments

 
A machine’s spindle is one of the key links in the machining chain. In other words, if there are irregularities inside or at the face, they can show up on your part.

It makes regular inspection and spindle maintenance critical to getting the most out of your equipment and maintain process efficiency. These three accessories, the Dyna Contact Taper Gage, the Dyna Test Bar and the Dyna Force Measurement Tool, can help you perform this maintenance easily without eating into valuable spindle time.

Dyna Contact Taper Gage

Dyna Contact CNC Spindle taper gage
Dyna Contact CNC Spindle Taper Gage
Spindle taper protection
The Dyna Contact taper gage makes verifying taper accuracy simple. All the operator must do is apply blue dye to the ceramic gage, insert it in the machine spindle and remove it. A quick visual check will reveal any improper contact points inside the taper.

Dyna Test Bar

Dyna CNC Spindle Test bar
Dyna CNC Spindle Test Bar
Static accuracy inspection
Another way to ensure your spindle bearings are good and ensure quality control is to measure its static accuracy. Using something like our Dyna Test bar, which inserts into the taper and extends out, is one way to do this.
With the help of a dial indicator, you can uncover any runout while safely spinning the spindle at a very low RPM and verify the parallelism of Z-axis motion.

Dyna Force Measurement Tool

Dyna Force CNC Spindle force measurement tool
Dyna Force CNC Spindle Force Measurement Tool
Retention force verification
Finally, in the machinery category, let’s talk retention force. The clamping mechanism in your spindle reduces chatter while ensuring rigidity and reliability. Like any other mechanism this can wear, making regular inspection a smart idea.
The Dyna Force measurement tool provides a precise digital reading that reveals reduction in retention force in increments of 0.1kN.
If you would like a demonstration for any of these tools contact us or set up an appointment for one of our Next Generation Tooling engineers to visit you!
2 Comments

A Practical Tutorial on High-speed Tool Holders

5/13/2020

0 Comments

 
A guest blog from BIG KAISER.
BIG Kaiser Balancing Practical Tutorial on High-speed Tool Holder
High-speed machining started getting popular in the ‘90s, especially in aerospace where they replaced fabricating processes with machining monolithic parts like wing struts from billets. Machine tools capable of spinning cutting tools at tens of thousands of RPM made it easier to produce these parts quickly.

Like machines, holders adapted. The centrifugal forces they had to manage in order to keep tools cutting correctly became extreme. The toolholding systems available at that time were found not to be as effective as the shallower 1-to-10 taper ratio of the German hollow taper shank, hohl shaft kegel (HSK) in German. The HSK has since been standardized to ISO specifications (12164-1, -2). 

HSK is now available in several sizes and forms to fit with small to large machines. For the most part, the market has settled on the form A for general milling. It has been adopted in Japan, North America and Europe and is truly one of the only worldwide-side toolholder standards. Form E or F is for high-speed machining. The forms have different features depending on the standard they follow.  
​
In the end, to achieve efficient tool life, proper finish and productivity in high-speed work, holders need to be as rigid, compact and short as possible to keep the whole assembly stable. 

What to know when choosing a high-speed tool holder ​

  1. Outer diameters/nuts with as few holes or slots as possible reduce noise, coolant splatter and enhance strength 
  2. Extra contact length of the internal taper of chuck bodies strengthens grip
  3. Limit collet overhang in your application
  4. Choose the right interface  
  5. Don’t overlook the spindle interface – we strongly recommend licensed dual-contact holders for maximum stability 
  6. The higher the gripping force the better
  7. A shallow collet taper and micro-mirror ground-finished surfaces improve concentricity and balance 
  8. Keep in mind how you’ll tighten nuts safely for secure  clamping and pull stud protection
  9. Consult ISO16084 provisions for the definition of maximum imbalance for different applications, defined as 'standard or roughing operations' and 'fine or finish operations'
When it comes to balancing holders, the quality G2.5 is widely used in the industry and is described in the ISO 1940-1 (issued in 2003) standard. However, this quality class is often over-specified and is in many cases not economically or technically feasible, especially when applied to smaller and lighter tools. Standards often applied to tools are more suited for rigid rotors and are practical in a broader use for balancing.

However, it cannot be applied to a complete system of spindles, tool holders and tools adequately and within technical constraints. For example, a tool to be compliant will have to be balanced to less than 1 gmm/kg at a speed of 25,000 rpm, which in turn corresponds to a mass eccentricity of less than 1 μm. This allowable tolerance is less than the interchange accuracy for even HSK, essentially negating all the costs and time for balancing the tool to such a strict tolerance. 

For this reason, all BIG KAISER tool holders are balanced according ISO 16084 (issued in 2017) specifically developed for rotating tool systems. ISO 16084 focuses on the interaction between spindle and tool factoring in the allowable load on the spindle bearings generated by the tool’s imbalance. This load must not exceed one percent of the dynamic load capacity of the spindle bearings. 

According to ISO 16084, the allowable unbalance tolerance is specified in [gmm] and is not expressed using a special quality grade [G]. In conclusion, BIG KAISER does not indicate any G-values for balancing quality, but rather the maximum rotational speeds of the individual tool holder. 

The BIG Kiaser MEGA holder program includes a variety of styles that can be used up to 40,000 RPM. They guarantee 100 percent concentricity and runout accuracy down to .00004" at the nose. They are built specifically to withstand speed and forces required in today’s high-throughput environment.
​
For more information on BIG KAISER's approach to balancing tool holders, click here. To learn more about our high-performance tool holders here.  
0 Comments

The BIG-PLUS Difference

1/22/2020

0 Comments

 
The Big Plus Difference
Spindles and tool holders are in a constant battle with the forces of nature, with this battle becoming more and more difficult with heavier cuts and longer projections. Chattering and deflection have always been the bane of machinists’ existence, so much so that the sight of a long and slender toolholder will immediately cause goosebumps.

If you understand why a long tool holder behaves the way it does, you’ll know that there are ways to fight back against this bending. Every machinist knows that short and stubby holders are more resistant to deflection than long and slender holders. You’ve also probably heard that, if possible, you’ll want most of your cutting forces to be axial rather than radial.

Not only does this fight chatter in operations like boring, but your spindle also is better equipped to handle loads in this axis. However, these options aren’t always going to be on the table, especially in unavoidable long-reach situations and many milling operations.

In this constant battle with tool deflection, much time and effort has been spent designing shorter holders, stiffer tools, and clever anti-vibration geometry and materials. But oftentimes, the body diameter(s) of the holder can be overlooked as a means of increasing rigidity, especially in situations where it is all you have to work with. This is a serious shame, as you’ll soon discover.

The concept of dual-contact technology has been around for years, existing in many different forms but always with the same goal of capitalizing on this untapped potential of rigidity. For those who don’t know, dual contact refers to the shank contacting the spindle taper and the spindle face simultaneously.

Oftentimes, the solution involved ex post facto alterations to the spindle or tool holder, such as using ground spacers or shims to close the gap, for example. In other words, there was no standard solution, and if you wanted dual contact, you would have to be prepared to spend time and money either buying modified tool holders or modifying them yourself to adapt them to your spindle.

BIG-PLUS emerged as a solution to this issue. Essentially, both the spindle and tool holder were ground to precise specifications so that they closed the gap between spindle face and flange in unison (while depending on very small elastic deformation in the spindle). What this meant is that operators were able to confidently switch BIG-PLUS tooling in and out of a BIG-PLUS spindle and achieve guaranteed dual contact.

Not only that, but standard tooling could still be used in a BIG-PLUS spindle if necessary, and vice versa.

Though not technically an international standard, it’s been adopted by many machine tool builders because of the clear performance improvements and simplicity. In fact, BIG-PLUS spindles come standard on more machines than you would think. We often come across operators that have machines with BIG-PLUS spindles and don’t even realize it.
big-plus flange vs conventional toolholder engagement
How exactly does dual contact help with tool rigidity? The torque (or moment) exerted by the cutting forces is maximized at the point where the holder and spindle meet, the base of the tool holder. With standard CAT40 tool holders, this would be the gage line diameter. When the holder contacts the spindle face via BIG-PLUS, the effective diameter would be the larger diameter of the v-flange, since this is the new anchoring point of the holder and spindle. So, you are beefing up the diameter at the point where the reactionary force is greatest.

It’s not too much of a leap to conclude that a larger effective diameter will give you more rigidity. That being said, you may still be asking yourself: does such a seemingly small increase in diameter really make a difference? To understand the effect of BIG-PLUS, you must understand the physics behind it.

Imagine a simple scenario in which a tool holder is represented by a cylindrical bar that is fixed at one end and free-floating at the other. In other words, a cantilever beam. If you think about it, this is essentially what a tool holder becomes once it’s secure in the spindle. Now, let’s introduce a radial force F that acts downward at the suspended end of the bar, which represents a cutting force you would encounter when milling or boring, for example. The bar, as you might expect, will want to bend downward. It’s similar to how a diving board bends when someone stands at the end, though less exaggerated.
Big Plus deflection drawing
It’s possible to predict the amount of deflection (or inversely, bending stiffness) at the end of this hypothetical bar if you know its length, diameter and material. The expression below represents the stiffness k at the end of the bar where d=diameter, L=Length and E=Modulus of Elasticity
(this depends on the bar material). The greater the value of k, the stiffer (or more rigid) our bar will be.
Picture
I won’t ask you to do any math here, I just want you to look at the equation. We can see that increasing d will increase the value of k, while increasing L will decrease the value of k, since it’s in the denominator of the equation. This certainly makes sense if you think about it: a short and squat bar (large d, small L) will be more rigid than a long and slender bar (small d, large L). 

Something interesting to note is that d is raised to the 4th power, while L is only raised to the 3rd power. Diameter affects rigidity an entire order of magnitude more than the length does. This is where the power of BIG-PLUS comes from and is why a small increase in diameter can have such a powerful effect on performance.
Big Plus Strict gage control surface finish
For a CAT40 tool holder, the gage line diameter is Ø44.45 mm and the flange diameter is Ø63.5 mm. Let’s imagine two bars of identical length and material, so L and E remain unchanged. One bar has a diameter of Ø44.45 mm (standard CAT40) and the other has Ø63.5 mm (BIG-PLUS CAT40).

If you were to plug these values into the above equation for comparison, you would find that the BIG-PLUS holder results in a k value that is around 4 times greater than the standard bar. Based on this comparison, you could say that a BIG-PLUS holder is 4 times as rigid as an identical standard CAT40 holder, because it is 4 times as resistant to deflection.

Think of the tool life and surface finish improvements you would see with a tool that is 4 times more rigid, not to mention the reduction in fretting and potential for reduced cycle time. You would get similar results if you were to make the same comparison for CAT50, BT40, BT30, etc.

Big Plus Comparison of Deflection Chart
If you’re still not convinced, we can also compare the rigidity in this way: Let’s say there is a Ø63.5 mm BIG-PLUS CAT40 bar of some arbitrary length. One of our more common gage lengths is 105 mm, or just over 4 inches, so let’s use it as an example. 

You’re probably wondering, at what length would a comparable standard CAT40 holder have an equal stiffness? If we take our stiffness expression and set it equal to itself (one side representing BIG-PLUS, the other non BIG-PLUS), we can plug in this BIG-PLUS holder length and our known diameters to find our unknown non-BIG PLUS length:
Big Plus Stiffness Formula
What does this mean? A BIG-PLUS holder of around 4 inches or 105 mm in length will have equal rigidity to a standard CAT40 holder of around 2.5 inches or 65 mm in length. Any experienced machinist will know quite well the difference in rigidity between a 4-inch long holder and a 2.5-inch long holder.

If this is true, we can say that implementing BIG-PLUS is equivalent to a 40% reduction in length in terms of rigidity. Theoretically, a BIG-PLUS tool holder will behave like a standard tool holder that is nearly half of its length! 

Obviously, we’ve used simple and idealized cases here to represent the complicated and dynamic world of metal cutting. Tool holders, of course, don’t have uniform body diameters or materials and the cutting forces usually aren’t acting in one direction in a constant and predictable way. If our holder necks up and down to different body diameters along its length, which is realistically what happens, each of these sections would be its own microcosm of “beam” that would influence the overall behavior (at that point, finite element analysis on a computer becomes the only practical way to predict behavior). 

So, will the advantage of BIG-PLUS really be as dramatic as our hand-calculated classical beam theory suggests? Probably not, but it depends on the tool holder/tool. Most cases will follow our simple model quite closely in practice; others not so much. If nothing else, we’ve demonstrated how dramatically the flange contact of BIG-PLUS can influence rigidity, at least in a purely mathematical sense. 

As if you needed any more reasons to be on the BIG-PLUS bandwagon besides increased rigidity, you will also eliminate Z-axis movement at high speeds, improve ATC repeatability and decrease fretting. This means that you will take heavier cuts, scrap less parts, and increase tool and spindle life.
BIG-PLUS isn’t a new idea by any means, but with a proven track record of tackling tough jobs, it’s hard to imagine working in a modern machine shop and not taking advantage of what it has to offer.

If you’re still not convinced, we can also compare the rigidity in this way: Let’s say there is a Ø63.5 mm BIG-PLUS CAT40 bar of some arbitrary length. One of our more common gage lengths is 105 mm, or just over 4 inches, so let’s use it as an example. 

You’re probably wondering, at what length would a comparable standard CAT40 holder have an equal stiffness? If we take our stiffness expression and set it equal to itself (one side representing BIG-PLUS, the other non BIG-PLUS), we can plug in this BIG-PLUS holder length and our known diameters to find our unknown non-BIG PLUS length:
0 Comments

Alternatives to Steep Tapers

12/13/2017

0 Comments

 
Below are excerpts from a Cutting Tool Engineering article by the same title. To read the entire article please click HERE.
Picture
Author Kip Hanson, Contributing Editor, Cutting Tool Engineering
(520) 548-7328
khanson@jwr.com
Kip Hanson is a contributing editor for Cutting Tool Engineering magazine. Originally Published: September 12, 2017 - 3:00pm


Shopping for a machining center was simpler when buyers had only two basic spindle choices: CAT or BT. Both of these “steep tapers” have an angle of 3.5 in./ft., or 7" in 24" (7/24), and are based on the 1927 patent by Kearney & Trecker Corp., Brown & Sharpe Manufacturing Co. and Cincinnati Milling Machine Co. 
​
With the development of automatic toolchangers in the late 1960s, machine tool builders in Japan modified the patented design and invented the BT standard. In the 1970s, tractor manufacturer Caterpillar Inc., Peoria, Ill., changed things again with a flange design now known as CAT, or V-flange.

“Sticking” Together

During the late ’80s, machine tool builders began offering vertical and horizontal CNC mills with spindle speeds higher than the 6,000 to 8,000 rpm common at the time. As rpm increased, so did problems with steep-taper toolholders.

​Chief among them is the tendency for the mating spindle and toolholder tapers to stick together. This is caused by the expansion of the spindle housing at high speeds, which allows the toolholder to be pulled upward into the spindle taper, jamming it in place.
HSK spindles, like the one shown in the illustration below, offer advantages steep-taper styles can't.  

​One way to eliminate this problem is by extending the toolholder flange upward, thus creating a hard stop against the spindle face and preventing further Z-axis movement. ​
HSK Ibag Spindle Cutaway
HSK spindles, like the one shown in the illustration above, offer advantages steep-taper styles can't. Image courtesy of IBAG North America.
This is the approach taken by BIG KAISER Precision Tooling Inc., Hoffman Estates, Ill. Jack Burley, vice president of sales and engineering, said the BIG-PLUS system—developed in 1992 by BIG Daishowa Seiki Co. Ltd., Osaka, Japan—relies on a bit of elastic deformation in the spindle to provide dual points of toolholder contact at its face and taper, eliminating upward holder movement as the spindle expands.

He said it’s also more rigid, with tests showing that the deflection on a CV40 BIG-PLUS toolholder measured at 70mm (2.755") from the spindle face is only 60µm (0.002") when subjected to 500kg (1,102 lbs.) of radial force, roughly half that of a traditional V-flange toolholder.
For people who think they can’t take advantage of this technology because they don’t plan to buy a new machine, they might want to check with their distributor, as their machine may already be equipped for BIG-PLUS.
Big Plus vs Standard Steep Taper contact
​“There are now roughly 150 machine builders that either offer BIG-PLUS or have it as a standard,” Burley said. “The beauty of the system is that it can use either standard toolholders or BIG-PLUS interchangeably. So for drilling and reaming work, you can use a conventional collet chuck, but for heavy milling cuts or profiling operations at higher spindle speeds, BIG-PLUS improves accuracy and tool life.”

Revving Up

Burley does not recommend BIG-PLUS for older machines that have never seen these toolholders, because CAT and BT taper-only contact holders tend to bellmouth the spindle over time, leading to undesirable results.

BIG-PLUS, like any dual-contact toolholder, requires particular attention to cleanliness, as chips caught between the spindle face and the toolholder can cause serious problems.

​He also recommends staying below 30,000 rpm when using 40-taper holders, noting that higher speeds are better handled by HSK spindles and holders.

Keep It Clean

clamping mechanism for HSK toolholders
The clamping mechanism for HSK toolholders is distinctly different from that of steep-taper holders. Image courtesy of BIG KAISER Precision Tooling.
Bill Popoli, president of IBAG North America, North Haven, Conn., said the company started building steep-taper spindles in the late ’80s, but 95 percent of its work has since transitioned to HSK spindles. As mentioned earlier, the extreme accuracy needed to guarantee near-simultaneous contact between the spindle face and taper is challenging, requiring micron-level tolerances in toolholder and spindle alike.
​
These requirements were impossible to meet when steep taper was first developed, Popoli said, resulting in looser standards overall for CAT and BT spindles than the ones applied to HSK spindles and toolholders. Because of this, purchasing an HSK or equivalent toolholder automatically makes one “part of the club” when it comes to balance, accuracy, repeatability and tool life.
That’s not to say, however, that shops firmly married to steep tapers should settle for less. Popoli recommends purchasing the highest-quality tooling possible and paying close attention to the stated tolerance.

Always stay below 20,000 rpm with 40-taper holders, and reach no more than 30,000 rpm with 30-taper ones. Use balanced holders and high-quality retention knobs that have been properly torqued—otherwise distortion at the small end of the taper may occur. And whatever the taper type, keep the spindle and toolholder clean at all times.

Bob Freitag agreed. The manager of application engineering at Minneapolis-based metalworking products and services provider Productivity Inc. said the lines are evenly split between traditional 40- and 50-taper CAT or BT tooling (much of which is BIG-PLUS) and HSK. 

“It really depends on the application,” Freitag said. “Most of our die and mold machines in the 20,000- to 30,000-rpm range will have an HSK63A or HSK63F. When you get up around 45,000 rpm, you’re probably looking at an HSK32. But in horizontal machining centers and lower-rpm, high-torque verticals, you’ll see mostly steep tapers, as this is generally preferred for deep depths of cut and lower feed rates, where you’re removing a lot of material at once.”

For shops that want to make the leap to an HSK machine but are leery of investing in new toolholders, Freitag advised:

​“Anytime you buy a new machine, you should buy new toolholders to go with it. If not, the imperfections of the old toolholders will soon transfer themselves to the spindle on the new machine.”
0 Comments

Remember to Replace Your Spindle Cleaners Regularly

8/9/2017

0 Comments

 
Picture
Guest Blog: Douglas Sumner
Product Manager TMS
​BIG

douglas.sumner@us.bigkaiser.com
Tel: 224.770.2915

Remember to replace your spindle cleaners on a regular basis so that you aren't using worn out cleaners. What you think is helping to preserve your valuable Machine Tool/Presetter might actually be hurting it.

​When replaced regularly, spindle cleaners can prolong the life of your machine, tools & holders, and tool cleaners enhance the repeatability to the machine spindle. This is a perfect example of how a small investment can make a big impact.
CAT BT Toolholder taper cleaners
0 Comments

Next Generation Tooling Now Offers Technical Training!

6/14/2017

3 Comments

 
We are very excited to announce that we are now able to offer on-site technical training to YOUR machinists at YOUR location!  This is offered at no charge  to customers who use any of the manufacturer's whom we represent in California and Nevada.  

However, just because you don't purchase things from us, don't feel left out! We also offer on-site topic specter training on any of the following topics for $150/hour.  

Each presentation lasts about 2 hours.  The presentations last approximately 45-60 minutes with the remaining time for Q&A and discussion about unique applications in your facility.
Picture
Training Classes Available:
Machining 101
  • Basic Boring
  • Basic Chamfering
  • Basic Drill Training
  • Basic End Mill
  • Basic Indexable
  • Basic Tap Training
  • Basic Tool Holders
  • Basic Work Holding / Fixturing​

Advanced Part Manufacturing:
  • Programming Tool Path – Climb versus Conventional
  • Material Machinability – Cubic Inches of Stock Removal
  • Part Set Up / Work Holding / Fixture 
  • Tool Holder Selection, Collet, Solid, Hydraulic, Shrink Fit
  • Cutting Tool Selection – Substrate, Geometry, Coating, Speed and Feeds 
  • Estimating Part Cycle Time
3 Comments

Rotary Toolholder Maintenance Best Practices

8/12/2015

0 Comments

 
Picture
In order to get the maximum life out of your Steep taper rotary toolholders in your CNC milling machines, follow these best practices that you can implement in your shop.  Perhaps not all of them can be implemented every day or every time but it's well worth being aware of how to best protect your investment.
  • Remove the toolholder from the Spindle after each usage.
  • Clean the taper and the holder with a an air blast to remove any fine chips or dirt that may be adhering to the holder.
  • Wipe the holder with a clean shop rag.
  • Spray the holder down with anti-rust lublcricant.
  • Put the holder in an antitrust bag.
  • Place the holder in the proper storage rack for that type of holder. 
  • If you are not going to be original shipping container using it again for some time, store it in the original shipping container
0 Comments
<<Previous

    Technical Support Blog

    At Next Generation Tool we often run into many of the same technical questions from different customers. This section should answer many of your most common questions.

    We set up this special blog for the most commonly asked questions and machinist data tables for your easy reference.

    If you've got a question that's not answered here, then just send us a quick note via email or reach one of us on our CONTACTS page here on the website
    email us

    Authorship

    Our technical section is written by several different people. Sometimes, it's from our team here at Next Generation Tooling & at other times it's by one of the innovative manufacturer's we represent in California and Nevada.

    Archives

    March 2023
    February 2023
    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    March 2020
    February 2020
    January 2020
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    March 2019
    January 2019
    September 2018
    June 2018
    April 2018
    February 2018
    December 2017
    November 2017
    October 2017
    August 2017
    June 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    August 2016
    March 2016
    February 2016
    January 2016
    November 2015
    August 2015
    July 2015
    May 2015
    April 2015
    March 2015
    November 2014
    August 2014
    July 2014
    December 2013
    November 2013
    September 2013
    July 2013
    March 2013
    December 2012
    March 2012
    November 2011
    May 2011
    March 2011
    January 2011
    December 2010
    November 2010
    October 2010

    Categories

    All
    5th Axis
    Aerospace
    Allied Machine
    Aluminum Oxide
    Angle Head
    AT3
    Balance
    Bellmouthed Hole
    Big Daishowa
    Big EWA Automatic Boring
    Big Kaiser
    BIG Plus
    Blue Photon
    Bone Screws
    Boring Tool
    Carbide
    Carmex Precision
    CBN
    Centerline Deviation
    Ceramic Black
    Ceramic End Mill
    Ceramic Inserts
    Ceramic Oxide
    Ceramic Whiskered
    Ceramic White
    Chamfer
    Champion Tool Storage
    Chip Breaking
    Circular Saw
    Class Of Fit
    CNC Lathe Tooling
    Collet
    Collet Chuck
    Collet ER
    Composites
    Covid-19
    Deep Hole Boring
    Deep Hole Drilling
    Drilling
    Dual Contact
    Dyna Contact Gage
    Dyna Force Tool
    Dyna Test Bar
    EMO
    End Mill
    Exotap
    Facemill
    Fixturing
    Fretting
    Gaylee Saw
    Hard Turning
    Heimatec
    Helical Interpolation
    Hohl Shaft Kegel
    How Its Made
    HSK A
    HSK-A
    HSK E
    HSK-E
    HSK F
    HSK-F
    HXL Tap
    Hy Pro Tap
    Hy-Pro Tap
    IMTS
    Jergens
    Kurt
    Lang
    Live Tooling
    MA Ford
    Maintenance Cart
    Mapal
    Martindale Saw
    Material: Aluminum
    Material: CFRP
    Material: D2
    Material: Hastelloy
    Material: Inconel
    Material: Peek
    Material: Stone
    Material Titanium
    Material: VC-10
    Metric Course Thread
    Metric Fine Thread
    Metric Thread Chart
    Microconic
    Micromachining
    ModLoc
    Modular
    Mogul Bars
    MPower
    No Go Too Loose
    NTK
    NTK HX5
    On Site Training
    OptiMill-SPM
    OSG Tap & Die
    Oversized Thread
    Parlec
    PCD
    PCT Firm Hold
    Platinum Tooling
    Projection Length
    Pull Studs
    Reamer
    Retention Knob
    Rotary Toolholders
    Rotary Toolholders BT
    Rotary Toolholders CAT
    Rotary Toolholders HSK
    Rotary Toolholders Hydraulic
    Rotary Toolholders Shrink
    Rough Thread
    Runout
    Runout Axial
    Runout Radial
    Saw Selection
    Short Tap Life
    Sialons
    Silicon Nitride
    Smart Damper
    Speed Increaser
    SpeedLoc
    Speroni STP Essntia
    Spindle Mouth Wear
    Swiss
    Swiss Machining
    Taper Wear
    Tapping Feed
    Tapping; Form
    Tapping IPM
    Tapping: Roll
    Tapping RPM
    Tapping Speed
    Tap Tolerance
    Technical Training
    Technicrafts
    Techniks USA
    Thread Milling
    Thread Whirling
    T.I.R.
    Tolerance
    Toolchanger Alignment
    Toolholder Taper
    Tool Presetter
    Torn Thread
    Troubleshooting
    UNC Thread Size
    Undersized Thread
    UNF Thread Size
    Unilock
    Vises
    Workholding

    RSS Feed

Picture

About
Contact
TOOLING
WORKHOLDING
EVENTS
NEWS
TECHNICAL


Established 1995
​

Next Generation Tooling
10240 Cavalletti Drive
Sacramento CA 95829
916.765.4227
Northern California
23 Maxwell Street
Suite B
Lodi, CA 95240
Southern California
22343 La Palma Avenue
​Suite 126
Yorba Linda, CA 92887
© 2023 Next Generation Tooling, LLC. 
All Rights Reserved
Created by Rapid Production Marketing

Find us on Instagram @nextgentool

  • Home
    • Schedule
    • Training
  • About
    • History
    • Contact
  • Territories
    • NorCal & N-NV
    • SoCal & S-NV
    • Mountains
  • Principals
    • Tooling >
      • 2V Industries
      • BIG Daishowa
      • Champion Storage
      • Drill America
      • Jewell Group
      • Mapal
      • Martindale Gaylee
      • OSG Tool
      • Performance Micro Tool
      • Platinum Tooling
      • TechniksUSA
    • Workholding >
      • BIG Daishowa
      • Earth Chain
      • Jergens
      • mPower Workholding
  • Promotions
  • Events
  • News
  • Technical