NEXT GENERATION TOOLING
  • Home
    • Schedule
    • Training
  • About
    • History
    • Contact
  • Territories
    • NorCal & N-NV
    • SoCal & S-NV
    • Mountains
  • Principals
    • Tooling >
      • 2V Industries
      • BIG Daishowa
      • Champion Storage
      • Drill America
      • Jewell Group
      • Mapal
      • Martindale Gaylee
      • OSG Tool
      • Performance Micro Tool
      • Platinum Tooling
      • TechniksUSA
    • Workholding >
      • BIG Daishowa
      • Earth Chain
      • Jergens
      • mPower Workholding
  • Promotions
  • Events
  • News
  • Technical

Andretti Autsport Reduces Set-Up Time by 80% with Big Kiaser Unilock Workholding

9/21/2022

0 Comments

 
Charlie Mitchell, machinist for Andretti Autosport, discusses how Unilock pallets reduced his setup time by as much as 80%.
0 Comments

Adjusting Screws Are Not Just Simple Set Screws

7/6/2022

0 Comments

 
By John Zaya, Product Specialist, BIG DAISHOWA—Americas
BCV40-MEGA13N-Exploded
As the title implies adjusting screws, also known as back-up screws, stop screws and preset screws, are not just a simple set screw. They are a screw with a purpose--three actually.

The first is to provide a fixed stop for a cutting tool to rest against during tool changes. This allows an operator to save time as they do not have to pull out a ruler, setting jig, etc. to reassemble the cutter into a holder.

A secondary purpose of the adjusting screw is to assist the tool holder in keeping the cutter from being pushed up into the holder if the cutting loads increase to the point where the tool may slip up into the holder.

​The third is to offer sealing for coolant-through tools. ​

1. Expected repeatability of cutting tool length

When an old cutter is swapped out and a new one put in its place, the repeatability of this process will vary based on a few parameters such as cleanliness and the OEM cutting tool overall length tolerances.

Cleaning the clamping bore or collet of a holder provides better runout repeatability which should be old news to everyone, but if old coolant and contaminants are not removed, they would get jammed between the end face of the shank and the adjusting screw, affecting the length setting. 

Cutting tool overall length tolerances may also vary from one OEM to another. We have seen them range from ±.3mm to ±.5mm (±.012” to ±.019”). Others may be tighter or looser.

​Most modern machining centers come with tool length offset measurement systems which will provide the final precise gage length of a tool assembly. With the rough position provided by the adjusting screw, the machine operator can continue working and does not need to worry about tool clearances and stick outs. 
BCV50-MEGA1.000DS-4-Exploded

2. Forms of adjusting screws

The clamping mechanism of the holder also affects the length repeatability. Both hydraulic chucks and milling chucks are radial clamping systems, whereas a tapered collet is drawn down into a taper by a threaded nut. This draw down causes the cutter to be drawn down as well.

​For this we have two types of adjusting screws: HMA/HDA solid type and NBA rubberized type. The solid type is a one-piece steel construction part, whereas the rubberized type has a rubber padded conical pocket that absorbs the axial travel of the cutter shank as the collet is clamped. 
BCV50-MEGA1.000DS-4-with-HMA

3. Option for adjustable reduction sleeves for MEGA DS/HMC

Milling chucks also have a second type of adjustment screw option that can be built into the back end of a reduction sleeve. As cutting tool diameters get smaller, the length of the shank also gets shorter.

​As such, the end face of the shank may not reach the HMA adjusting screw when installed it the body of the holder. The AC Type Collet adjuster screws into the back end of the reduction sleeve where the shank the tool can easily be reached. 
BCV50-MEGA1.000DS-4-with-AC Collet 1

4. Warning on holders that cannot support adjusting screws

It is always recommended to consult the tool holder catalog or technical documentation to ensure that a holder can support an adjusting screw. Some holders are very short or have very deep internal features that may not allow for the use of any adjusting screw. In those cases, a depth setting ring or collar on the shank of the cutting tool may be an acceptable alternative. 

Caution should be used on shrink-fit holders. Thermal expansion/contraction occurs in all three axes, so as the body of a shrink-fit holder cools down it will draw the cutter down jamming onto the adjusting screw. This could lead to damage to the screw, the holder or the cutter. 
0 Comments

UNILOCK Zero-Point Clamping System and Workholding for 5-axis Machines

6/21/2022

0 Comments

 
John Zaya, Product Specialist, explains the concepts behind the UNILOCK Zero-Point workholding system.

He also discusses base pallets and options for 5-axis machines.
Chapters:
0:00 Introduction
0:13 Basic Concepts
0:52 Features of the UNILOCK Clamping Knob
1:50 UNILOCK 5-Axis Program
BIG DAISHOWA is a different kind of tooling partner. Our mission is to find the best of the best and deliver it to our customers with a personal commitment to helping them install truly efficient solutions. We have exceptionally high standards for the products we represent. The result is an all-star line-up of products that deliver true and measurable performance advantages. Products that are engineered to exacting standards and then manufactured with materials and craftsmanship that enable superior performance.
0 Comments

The Different Types of Boring Tools

2/16/2022

0 Comments

 
different-types-of-boring-tools
Put simply, the manufacturing process of boring is enlarging a hole in a piece of metal. There are quite a few different pieces of machinery or approaches that can be used to make holes from lathes and mills to line boring or interpolation. We wanted to do a quick break down of the different kinds of boring tools available to bore holes and/or secondary boring operations.

Boring Bars

Boring deep holes can involve extreme length-to-diameter ratios, or overhang, when it comes to tooling assemblies. Since it can be difficult to maintain accuracy and stability in these scenarios, we need boring bars to extend tooling assemblies and while maintaining the rigidity to make perfect circles with on-spec finishes.

Solid boring bars
Typically made of carbide for finishing or heavy metal for roughing, solid boring bars have dense structures that make for a more stable cut as axial force is applied.

Damping bars
When cutting speeds are compromised, or surface finishes show chatter in a long-reach boring operation, damping bars are an option. They have integrated damping systems. Our version, the Smart Damper, works as both a counter damper and friction damper so that chatter is essentially absorbed.
different-types-of-boring-tools-2

Boring Heads

Boring heads are specifically designed to enlarge an existing hole. They hold cutters in position so they can rotate and gradually remove material until the hole is at the desired diameter.

Rough boring heads
Once a bore is started with a drill or by another method, rough boring heads are the choice for removing larger amounts of material. They are built more rigid, to handle the increased depths of cut, torque and axial forces needed to efficiently and consistently make the passes to remove materials.

Fine boring heads
Fine boring heads are best used for more delicate and precise removal of material that finishes the work the rough boring head started. They are often balanced for high-speed cutting since that’s the best approach for reaching exact specifications.

Twin cutter boring heads
Most boring heads feature one cutter that cuts as its feed diameter is adjusted by the machine. There are twin cutter boring heads that can speed up cutting and add versatility. For example, the Series 319 and other BIG KAISER twin cutter boring heads include two cutters that can perform balanced or stepped cutting without additional accessories or adjustments by switching the mounting locations of the insert holders that have varied heights.

Digital boring heads
Traditionally, adjusting boring heads has been painstaking and time-consuming, especially when it’s done in the machine. It’s easy to make mistakes when maneuvering to read the diameter dial and adjusting it to the right diameter. Digital boring heads have a LED that makes precise adjustments much easier.
different-types-of-boring-tools-4

Starter Drills

Since cutters are on diameter of boring heads and not their face, they are not able to initiate a hole on a flat surface or raw material. Especially in smaller bores, fluted drills called starter drills can be used to get the hole started before rough boring.

Specialty boring heads
Back boring and face grooving heads, as well as chamfering insert holders, are available for some of the most common secondary operations, after a hole is bored. We produce specific heads with cutters at the appropriate angles so each of these operations can be done without manually moving the part, changing the tool or adjusting the cutter angle.

Modular boring tools
Since limiting length-to-diameter ratios is so crucial to boring success, it’s extremely valuable to be able to make your tooling assembly as short as possible. Our modular components are based on a cylindrical connection with radial locking screw that allows for the ideal combination of different kinds of shanks, reductions and extensions, bars, ER collet adapters and coolant inducers.

Looking for some help finding the right boring equipment for your next job or new machine? Our engineers are here to help. Get in touch with us here.
0 Comments

Micromachining: What to Know About Toolholders, Drills, End Mills, and CNC Machines.

9/21/2021

1 Comment

 
About the author: Jack Burley, Vice President of Sales and Engineering and Big Kaiser Precision Tooling Inc.
Micromachining, cutting where the volume of chips produced with each tool path is very small, is not a high-speed operation in relation to chip load per tooth. Rather, it involves a high spindle speed relative to cutter diameter. The part may be physically larger, but details of the part require ultra-small profiles achieved only by micromachining. In other words, micromachining is not limited in scope to only miniature parts.
Big Kaiser considers tools with <3mm to be micro tools with unique geometric considerations.
Big Kaiser considers tools with <3mm to be micro tools with unique geometric considerations.
TOOLHOLDING
In medical work, where tight tolerances are standard, dynamic runout; the measurement of the spindle at high speeds, performed using laser or capacitance resistance technology, and balance must be controlled to deliver and maintain viable tool life.
Much of this burden falls on the holder. Balance doesn’t change as spindle speed increases, however the forces it creates increase exponentially alongside speed. The impacting results appear quickly in micromachining.

When runout occurs, the edge most affected takes over the bulk of the cutting. Uneven wear causes the tool to fail more quickly than if the tool rotates about the centerline as intended. In one customer application, we found that drilling into a steel workpiece 0.590" deep with a 0.118" diameter carbide drill in a holder with 0.00008" runout accuracy produced 2,300 holes.
BIG KAISER HSK-E32, E25, or E20
Micro milling machines, ideally suited for small tools and small workpieces, are characterized by spindle speeds of more than 50,000rpm using small HSK tool holders such as HSK-E32, E25, or E20.
A holder with 0.00060" runout accuracy produced nearly two-thirds fewer holes, only 800. In this scenario, the shop could save hundreds of dollars a month in carbide costs – as well as labor costs due to less tool changing – by making one smart tool holder choice.

Holder attributes that can boost production include symmetrical design, a perfectly concentric collapse of the collet around the cutter, and a ball-bearing raceway nut with precision-ground threads.

CHALLENGES
While these characteristics are good rules of thumb, things change fast in this field and, like our customers, we must adapt as trends emerge.

Batch sizes are getting smaller. Bone screws, for example, were typically run on multi-axis, Swiss-type lathes where the same tools and programs ran for days at a time. Traditionally, prototyping in this arrangement was not an option because of the complexity and time involved in programming and setup. Today’s need for customized sizes demands flexibility and quick changeover to remain productive.

We are investing a large portion of our research and development (R&D) in tackling this challenge. We are working on hydro-clamping tool holder systems that could make the decades-long approach of using ER collets obsolete. It would make it possible, for example, to perform a simple drill change on a gang slide in seconds.

COOLANTS
Another trend in medical manufacturing being driven by the U.S. Food and Drug Administration (FDA) is clean machining without the use of water-soluble coolants.
Super-chilled CO2 or cryogenic machining with liquid nitrogen are considered possible replacements. Protecting small holder parts at the nose from coolant has always been a concern, but using gas requires more attention for holders to be effective.
Mega Micro Coolant Nut for Mega Micro Chuck 6S
The Mega Micro Coolant Nut for Mega Micro Chuck 6S provides a more efficient coolant supply for micro cutting tools and is designed for high-speed micro machining up to 6mm.
We are focusing on two features:
  • Holders that remain completely sealed to outside atmosphere
  • Very small delivery holes in collet faces or clamping nuts that properly restrict gas flow
Big Kaiser hydro- clamping tool holder system for Swiss-type lathes
Matching medical components to each patient demands flexibility. This hydro- clamping tool holder system for Swiss-type lathes would make the decades-long approach of using ER collets obsolete by making it possible to perform a simple drill change on a gang slide in seconds.
TOOLING
Tool considerations also must be taken into account to keep up with the demanding medical field. Better results often cannot be achieved by simply increasing spindle speeds or using smaller tools; a deeper understanding of cutters is necessary.

We consider tools with diameters <3mm to be micro tools. These aren’t simply smaller versions of their macro counterparts. They have geometric considerations all their own. For example, the 1mm Sphinx drill can run at 80xD. But this is only possible because the cylindrical shaping extends further down the tool, closer to the tip, to facilitate pecking and maintain strength.

Tool carbide should be ultra-fine grain (nano or submicron grain size) to ensure high abrasion resistance and good toughness. Coatings are valuable too, but it’s important to understand how coatings can negatively impact micro tool performance. Micro tools have extremely fine surface finishes and sharp cutting edges. Coatings can fill in valuable space – a flute on a drill, for example – needed for proper chip evacuation, which is critical in these applications.

Coatings must be ultra-thin (<1µm) and smooth; our experience shows that misapplied coatings result in poor tool life due to breakage; the coating reduces cutting edge sharpness, increasing torque force on the drill. When coating is necessary, consult with the cutting tool manufacturer to provide this directly.

Chips and small tooling naturally do not get along well. Compensating for low spindle speeds with tools that have more flutes support an ideal feed rate, but chip evacuation may suffer. Determining the appropriate chip load – as close to the cutting edge as possible – allows operations at the highest possible spindle speed, accelerating the cycle and improving surface finish.
Optimal conditions exist when the chip load is relatively equal to the cutting edge radius.

Many micro end mills are designed so the cutting edge radius has a positive rake angle to create a shearing action. A chip load less than the cutting edge radius often results in a negative rake angle where the tool rubs rather than cuts. This increases the force required and generates more heat which can result in built-up edges and poor tool life. A chip load significantly bigger than the cutting edge radius often leads to premature failure because the tool is not robust enough to withstand such forces.

MACHINE TOOLS
Micromachining requires machine tools with very high sensitivity, fine resolution in the feed axis, and very precise spindles capable of high speed with low dynamic runout. For micro-drilling operations, specialized micro machines are best.

Micro milling machines are suited for small tools and small workpieces. They are characterized by spindle speeds faster than 50,000rpm using small HSK tool holders such as HSK-E32, E25, or E20. With the right holder, tool runout can be controlled to less than 1µm (0.000040") at the cutting edge, ensuring sub-micron accuracy.

In medical micromachining, understanding each piece of the equipment puzzle is critical. It’s also important not to make assumptions based on other tools or parts you may have worked with, especially in more standard sizes. Invest the right time and energy in gearing up for the next medical job and you’ll get more parts done right faster.

1 Comment

10 Tips for Improving Tool Holder Performance

8/19/2021

0 Comments

 
10 Tips for Improving cnc rotary ToolHolder Performance
The four critical requirements for tool holders are clamping force, concentricity, rigidity, and balance for high-spindle speeds. When these factors are dialed in just right, there’s nearly no chance of holder error and considerable cost reduction is achieved thanks to longer tool life and reduction of down-time due to tool changes. 

Easier said than done, our experts shared some of their best, quick-hitting advice for top tool holder performance in different situations. 

1. Balance holders as a complete assembly

Long-reach milling has some unique demands; when setting up this type of job, always balance tool holders as a complete assembly. While many tooling providers pre-balance their holders at the factory, it’s often inadequate, especially for long-reach applications.

2. Holder damage can go from bad to worse quickly

 Wear and tear on holders can be costly in the end, but there are ways to protect against it. Inspect and care for your holders. Trauma on a holder or spindle—dings, scratches, gouges, etc.—can magnify quickly. One bad holder can spread its problems like an illness. If you’re seeing disruptions like these on your holders, get them out of the rotation. 

3. The rule of thumb on holder dimensions

Looking for affordable ways to avoid vibration? Start by opting for a holder with a combination of the largest diameter and shortest length possible.

4. Rigidity can harm tapping operations 

What many don’t realize about tapping operations is that a perceived strength of collet chucks—their rigidity—can actually be detrimental. Rigidity does very little to counteract the dramatic thrust loads imposed on the tap and part, exacerbating the already difficult challenge of weathering the stop/reverse and maintaining synchronization.

5. Balancing is crucial to five-axis machining

Five-axis machining introduces a whole new set of tooling challenges. While important in any type of machine, balance may be of most importance in full five-axis work. A well-balanced holder helps ensure the cutting edge of the end mill must be consistently engaged with the material in order to prevent chatter and poor surface finish quality. 

6. Consider spindle speed requirements when choosing between shrink-fit and hydraulic holders 

If you have to choose between shrink-fit and hydraulic holders in a long-reach application, consider the spindle speed required. If a hydraulic chuck exceeds its rated RPM, fluid is pulled away from the holder’s internal gripping gland, causing loss of clamping force. But when used within its recommended operating range, a hydraulic tool holder offers superior runout and repeatability. On average, a good shrink-fit holder has about 0.0003-inch runout, while a hydraulic chuck offers 0.0001 inch or better.

7. Don’t overlook the tool’s effect on holder performance 

The cutting tool affects holding ability more than most machinists and engineers realize:
  1. Polished shanks reduce friction, as does the cleanliness.
  2. Oil and coolants reduce gripping power.
  3. Cutter shank roundness is often assumed to be close enough to perfect to ignore, but in reality, a 25 millionths tolerance is necessary for high-speed performance.

8. Not all dual-contact tooling is the same

Anyone in the market for BIG-PLUS dual-contact tooling should consider this simple statement: Only a licensed supplier of BIG-PLUS has master gages that are traceable to the BIG grand master gages and have the dimensions and tolerances provided to make holders right. Everyone else is guessing and using a sample BIG-PLUS tool holder as their own master gage—a practice that any quality expert will advise against.

Look for the marking: “BIG-PLUS Spindle System-License BIG DAISHOWA SEIKI.”

9. You may have a BIG-PLUS spindle and not even know it

You’d be surprised how often we hear from our certified regrinders or engineers in the field about folks that didn’t realize their machine had a BIG-PLUS spindle—the message can get lost in the supply chain or during the sales process. 

The easiest way to know if an interface is BIG-PLUS is to place a standard tool into the spindle and see how much of a gap there is between the tool holder flange face and spindle face. Without BIG-PLUS, the standard gap should be visible, or about 0.12 in. If it is BIG-PLUS, the gap is half of this amount, or only 0.06 in. These values change depending on 30 taper, 40 taper or 50 taper sizes, but the gap is visibly less than usual.

10. Use positive offsets during holder setup 

It may be how it’s traditionally been done but touching off holder assemblies in each machine to establish negative tool offsets based on the zero-point surface—the vise, machine table, workpiece, etc.—is not the most efficient process. We think the choice is pretty clear: adapting machines to a single presetter so they can receive positive gage lengths is superior to using all types of machine-specific negative offsets. 

This is a change to “the way things have always been done” that can be met with some resistance, but in the grand scheme of things, it’s a relatively small and simple step that makes life much easier. It’s a relatively low-cost opportunity to introduce more standardization of holder setup to the shop floor.

Holders are the bridge between the machine and the part. That’s a lot of pressure—literally and figuratively. It’s important to select, care for and use holders carefully from the day they are purchased until they’re tossed into the recycling bin. 

From collet chucks to coolant inducers, BIG KAISER is North America’s source for standard-bearing tool holders that guarantees high performance. Explore the full lineup. 

0 Comments

To Balance, Or Not To Balance? Toolholders, That Is

3/16/2021

0 Comments

 
DEPTH OF CUT COLUMN
by Jack Burley, President and COO at BIG KAISER Precision Tooling Inc.
It’s time for machine tool builders and machining companies to shelf the long-standing ISO 1940-1 standard in favor of ISO 16084:2017. Not only is balancing tools rarely necessary, it can also be risky.
A lot of conflicting information has circulated over the years about balancing tools. As an author of the new standard for calculating permissible static and dynamic residual unbalances of rotating single tools and tool systems – ISO 16084:2017 – allow me to clear some things up and, hopefully, make life a little easier for you.
An argument can be made for balancing almost every tool put in a machine. In the world of rotating tools, small changes to an assembly, like a new cutting tool, collet, nut or retention knob, can put an assembly out of tolerance.

​Therefore, it stands to reason that any unbalance could translate to the part, tooling and/or machine spindle in harmful ways. You’ll hear the case for balancing every single tool based on the 
long-standing ISO 1940-1 standard.
over-balanced-tool-holder
Balancing a toolholder several times causes the toolholder to become excessively modified. It's OVERBALANCED
Since its institution in 1940, the G2.5 balance specification has been widely accepted across the industry; i.e., “it’s how things have always been done.”

However, machines were much slower 80 years ago. Back then, the most advanced machines would have spun larger, heavier tools at a maximum speed of about 4,000 RPM. If you applied the math from those days to today, you’d get unachievable values.

For example, the tolerances defined by G2.5 for tools with a mass of less than 1 pound rated for 40,000 RPM calculates to 0.2 gram millimeters (gm.mm.) of permissible unbalance and eccentricity of 0.6 micron. This isn’t within the repeatable range for any balance machine on the market.

Similarly, application-specific assemblies, for operations like back boring and small, lightweight, high-speed toolholders, can’t be accurately balanced for G2.5.

Machine tool builders rely on an outdated number, too, often basing spindle warranty coverage on using balanced tools at very specific close tolerances. While it’s true that poorly balanced tools run at high speeds wear a spindle faster, decently balanced tools performing common operations won’t wear spindles or tools drastically and deliver the results you’re looking for.
While it’s true that poorly balanced tools run at high speeds wear a spindle faster, decently balanced tools performing common operations won’t wear spindles or tools drastically and deliver the results you’re looking for.

A Little Lesson About Forces

This all begs the question: When do you need to take the time to balance holders? I would argue that tools require balancing only if they’re notably asymmetrical or being used for high-speed fine finishing. Here’s a rule I’ve long followed: If cutting forces exceed centrifugal forces due to unbalance, high-precision balancing isn’t needed because the force required to balance the tool will most likely be less than cutting forces.
In other words, if you’re rough milling with a heavy radial cut, the different forces will start bending the tool. When that happens, the cutting forces and all the feed forces will be substantially higher than whatever the unbalance forces might be. If that’s the case, it’s not that you take the unbalance force and add it to the cutting force and find your adjustment. 
Big Kiaser New Baby Chuck and Mega New Baby Chuck are balanced for High speed machining
Big Kiaser New Baby Chuck and Mega New Baby Chuck are balanced for High speed machining. The Precision collet is guaranteed to produce a maximum runout of only 1 micron at the collet nose.
At that point, aggressive cutting – not unbalance – is going to damage the spindle.  

Unbalanced tools are also blamed for issues that turn out to be misunderstandings about a machine’s spindle. I’ve visited shops with new high-speed spindles that had trouble running micro tools over 15,000 RPM. They rebalanced all the tools on the advice of their machine tool supplier, but to no avail.  It turned out the machine was tuned for higher torque and higher cutting forces. Before going to the effort of balancing toolholders, work with your machine builder to understand where a spindle is tuned.

Not only is balancing tools rarely necessary, it can also be risky. Our inherently asymmetrical fine-boring heads are a good example. Because we balance them at the center, a neutral position of the work range, you lose that balance if you adjust out or in.

To adjust, you’d typically add weight to the light side, which can be a problem for chip evacuation and an obstructor. Or you can remove weight from the heavy side, but that means you have to put some big cuts on the same axis of the insert and insert holder, ultimately weakening the tool.

In longer tool assemblies, common corrections made for static unbalance can also cause issues. It happens when a toolholder is corrected for static unbalance in the wrong plane; i.e., adding or removing weight somewhere on the assembly that’s not 180 degrees across from the area where there’s a surplus or deficit.

​Once the tool is spun at full speed, those weights pull in opposite directions and create a couple unbalance that often worsens the situation.
BIG KIASER Mega ER Balanced holders
All the components of Big Kaiser's Mega ER Grip Series - Body, Collet and Collet nut - Are all balanced for high speed machining

A Cautionary Tale

If you do go down the balancing road, you’d better know where you can modify tools, what’s inside, how deep you can go, and at what angles. Whether you’re adding or removing material on a holder, I highly recommend consulting the tool manufacturer for guidance first.

As a cautionary tale, consider a customer who was attempting to balance a batch of our coolant-fed holders. Based on the balancing machine, the operator drilled ¼-inch holes at the prescribed angle into the body of the holders. Not realizing what was inside, he drilled into cross holes connecting coolant flow and ruined several holders.

Tooling manufacturers are doing their part to avert disasters like this. For most, simple tools like collet chucks or hydraulic chucks are fairly easy to balance during manufacturing. We account for any asymmetrical features while machining and grinding holders and pilot each moving part, ensuring they’ll locate concentrically during assembly. These measures ensure the residual unbalance of the assemblies is very, very low and eliminate the need for balancing.
Auto-balancing boring heads are designed specifically for the high-speed finishing I mentioned earlier, where unbalance force can be greater than cutting force. Our EWB boring heads, for instance, have a small internal counterweight that moves in direct proportion with each adjustment. Because the weight is carbide, it’s three times more dense than the steel in the tool carrier and is maintained inside the head’s symmetrical body.
Picture
Autobalance boring heads, Series 310 EWB, maintain perfect balance throughout the work range due to the integrated counter-balance mechanism. Even at maximum speeds, balanced tools guarantee vibration-free boring, resulting in increased productivity and high precision.
Decades of the same standards have conditioned us to think a certain way about balancing tools. While it seems logical that every tool must be balanced, it’s just not the case: Many issues attributed to unbalance aren’t caused  by unbalance, and the risks of balancing every single tool often aren’t worth the reward.
​
Save your balancing time and resources for high-speed fine finishing. If you do have work where balance is crucial, consider how the tools you buy are balanced and piloted out of the box and/or consult your partners before making any modifications.
0 Comments

Speroni Tool Presetter: A Fabricator Finds Dramatic Time and Tool Cost Savings in an Unusual Place

12/15/2020

0 Comments

 
Big Kaiser Speroni STP Essntia Tool Presetter at Alfa Granite & Tile
The Speroni STP Essntia Tool Presetter bench top design from Big Kaiser can work with any brand or router and handles very complex tool profiles stone cutting with ease, according to Denis Phocus, the owner of Alfa Granite & Tile.
Alpha Granite & Tile in Austin, TX, has grown steadily since its opening in 2003, adding and diversifying machinery, materials and service offerings along the way, eventually earning the title “Accredited Natural Stone Company” from the Natural Stone Institute. They’ve expanded to deliver a range of custom residential and commercial stone surfaces, from wall cladding to kitchen countertops, in more than 150 colors of granite, marble, onyx, quartz, quartzite and ultra-compact sintered surfaces.

To keep up, Alpha Granite has invested in several advanced CNC machines, diminishing or altogether eliminating many of the laborious and time-consuming processes. Despite the technological advances, there was still a bottleneck that frustrated owners Denis and Sonia Phocas.

“Measuring tools in the stone industry was always a very laborious process,” explained Denis Phocas. “It’s archaic. You get wet, dirty and it takes a really long time. In reality, the process destroys tools because employees know the time and effort involved, so they tend to skip the necessary measuring intervals [ultimately cutting tool life roughly in half].

Dressing of the tools is also skipped, as this process needs to be done after a set amount of linear feet of work. In essence, the tools need to be measured and sharpened at set intervals to increase life.”

The traditional measuring process is manual. Measuring height and diameter to set up and inspect tools requires handheld instruments like calipers. Phocas explains how important accurate and sharp tools are to cutting stone profiles.

Since each profile requires several passes by six or seven different tools, each dependent on the accuracy, and more delicate than the one before. In other words, if the first tool isn’t dialed in right, the profile shape will be deformed, tools wear faster and the hours spent preparing them are wasted.

“Finding the center of one tool is hard enough,” he said. “Finding the center in relation to six others is very difficult.”

Phocas had heard about tool presetters, essentially a powerful microscope with a high-resolution monitor and basic computing power. It allows for precise inspection and measurement of tool edges. The process is relatively new to the stone industry and mostly limited to larger fabricators. As he explored further, Phocas began to understand why — only the big guys could afford them.

​The presetters he saw from his distributers were big, expensive and, frankly, had more bells and whistles than a family-owned independent shop like Alpha Granite would need. Phocas recalled thinking, “It was such a major expense. Who needs to spend $60,000 on something you don’t need fully automated? There had to be a smaller solution.”

Phocas approached suppliers about entry-level options, but they continued pushing more expensive options. He got creative and found a metalworking supplier, Big Kaiser Precision Tooling in Hoffman Estates, IL, that might be able to help. The Speroni STP Essentia they offered featured a compact bench-top design, could work with any brand of router tools and handle the more complex tool profiles in stone cutting with ease. Most importantly, it was much less expensive than the other options he had found.

After working closely with a representative from Big Kaiser, even trying out an Essentia in his shop, Phocas was convinced and decided to purchase one. While there are significantly fewer types of tools used for profile cutting, this new capability and process would be an adjustment at first, starting with installation.

“I had never worked with one of these,” said Phocas. “It’s a precision tool. I wouldn’t call it daunting, but the process was interesting. We installed it in the workshop manager’s office because we wanted to keep it in a clean environment and because it’s got a computer hooked up to it. In the end, the installation process was pretty straightforward.”
Working with Alfa Granite & Tile instructions Speroni touchscreen Tool Presetter
Working with Big Kaiser, Alfa Granite & Tile, put together instructions for using the Speroni touchscreen system and measuring their 11 most common tools for us in the Tool Presetter
To shrink the learning curve for his team, Phocas worked with Big Kaiser to develop a simple calibration manual. In just 18 pages, they were able to include step-by-step instructions for using the touchscreen system and measuring their 11 most common tools, from simple drillers to ogees.
“Once we got used to it, it was very easy,” said Phocas. “Our employees simply love the Essentia and now depend on it.”

The results have been undeniable. “The Essentia quickly tells you if a tool is out of shape,” explained Phocas. “I can prepare a set of tools in about 10 minutes, put them on the machine and start running. Whereas, with the old system it would take me anywhere between two to three hours, re-measuring and re-dressing while machines sat idle. We think our tool life has improved by 35 to 45 percent as well. It’s just phenomenal.”

Alpha Granite isn’t stopping there. In the near future, they’ll install software on their CNC routers that will precisely monitor the amount of linear feet each tool is working. This data will make tool recalibration even more streamlined. As things stand now, they have scheduled days for using the Essentia to recalibrate tools. With the new software, they’ll be able to recalibrate on-demand, so to speak, right when a tool has reached its manufacturer-recommended linear feet.

The addition of the Essentia has sparked dramatic process improvements. While presetters aren’t foreign to stonework, they aren’t all that common at fabrication shops like Alpha Granite. But if the results are any indication, other independent fabricators may want to get creative in their exploration of tool management options too.
​
The full story about Alpha Granite & Tile can be found in the April 2018 issue of Stone World or online at: www.stoneworld.com. ​​
0 Comments
<<Previous

    Technical Support Blog

    At Next Generation Tool we often run into many of the same technical questions from different customers. This section should answer many of your most common questions.

    We set up this special blog for the most commonly asked questions and machinist data tables for your easy reference.

    If you've got a question that's not answered here, then just send us a quick note via email or reach one of us on our CONTACTS page here on the website
    email us

    Authorship

    Our technical section is written by several different people. Sometimes, it's from our team here at Next Generation Tooling & at other times it's by one of the innovative manufacturer's we represent in California and Nevada.

    Archives

    March 2023
    February 2023
    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    March 2020
    February 2020
    January 2020
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    March 2019
    January 2019
    September 2018
    June 2018
    April 2018
    February 2018
    December 2017
    November 2017
    October 2017
    August 2017
    June 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    August 2016
    March 2016
    February 2016
    January 2016
    November 2015
    August 2015
    July 2015
    May 2015
    April 2015
    March 2015
    November 2014
    August 2014
    July 2014
    December 2013
    November 2013
    September 2013
    July 2013
    March 2013
    December 2012
    March 2012
    November 2011
    May 2011
    March 2011
    January 2011
    December 2010
    November 2010
    October 2010

    Categories

    All
    5th Axis
    Aerospace
    Allied Machine
    Aluminum Oxide
    Angle Head
    AT3
    Balance
    Bellmouthed Hole
    Big Daishowa
    Big EWA Automatic Boring
    Big Kaiser
    BIG Plus
    Blue Photon
    Bone Screws
    Boring Tool
    Carbide
    Carmex Precision
    CBN
    Centerline Deviation
    Ceramic Black
    Ceramic End Mill
    Ceramic Inserts
    Ceramic Oxide
    Ceramic Whiskered
    Ceramic White
    Chamfer
    Champion Tool Storage
    Chip Breaking
    Circular Saw
    Class Of Fit
    CNC Lathe Tooling
    Collet
    Collet Chuck
    Collet ER
    Composites
    Covid-19
    Deep Hole Boring
    Deep Hole Drilling
    Drilling
    Dual Contact
    Dyna Contact Gage
    Dyna Force Tool
    Dyna Test Bar
    EMO
    End Mill
    Exotap
    Facemill
    Fixturing
    Fretting
    Gaylee Saw
    Hard Turning
    Heimatec
    Helical Interpolation
    Hohl Shaft Kegel
    How Its Made
    HSK A
    HSK-A
    HSK E
    HSK-E
    HSK F
    HSK-F
    HXL Tap
    Hy Pro Tap
    Hy-Pro Tap
    IMTS
    Jergens
    Kurt
    Lang
    Live Tooling
    MA Ford
    Maintenance Cart
    Mapal
    Martindale Saw
    Material: Aluminum
    Material: CFRP
    Material: D2
    Material: Hastelloy
    Material: Inconel
    Material: Peek
    Material: Stone
    Material Titanium
    Material: VC-10
    Metric Course Thread
    Metric Fine Thread
    Metric Thread Chart
    Microconic
    Micromachining
    ModLoc
    Modular
    Mogul Bars
    MPower
    No Go Too Loose
    NTK
    NTK HX5
    On Site Training
    OptiMill-SPM
    OSG Tap & Die
    Oversized Thread
    Parlec
    PCD
    PCT Firm Hold
    Platinum Tooling
    Projection Length
    Pull Studs
    Reamer
    Retention Knob
    Rotary Toolholders
    Rotary Toolholders BT
    Rotary Toolholders CAT
    Rotary Toolholders HSK
    Rotary Toolholders Hydraulic
    Rotary Toolholders Shrink
    Rough Thread
    Runout
    Runout Axial
    Runout Radial
    Saw Selection
    Short Tap Life
    Sialons
    Silicon Nitride
    Smart Damper
    Speed Increaser
    SpeedLoc
    Speroni STP Essntia
    Spindle Mouth Wear
    Swiss
    Swiss Machining
    Taper Wear
    Tapping Feed
    Tapping; Form
    Tapping IPM
    Tapping: Roll
    Tapping RPM
    Tapping Speed
    Tap Tolerance
    Technical Training
    Technicrafts
    Techniks USA
    Thread Milling
    Thread Whirling
    T.I.R.
    Tolerance
    Toolchanger Alignment
    Toolholder Taper
    Tool Presetter
    Torn Thread
    Troubleshooting
    UNC Thread Size
    Undersized Thread
    UNF Thread Size
    Unilock
    Vises
    Workholding

    RSS Feed

Picture

About
Contact
TOOLING
WORKHOLDING
EVENTS
NEWS
TECHNICAL


Established 1995
​

Next Generation Tooling
10240 Cavalletti Drive
Sacramento CA 95829
916.765.4227
Northern California
23 Maxwell Street
Suite B
Lodi, CA 95240
Southern California
22343 La Palma Avenue
​Suite 126
Yorba Linda, CA 92887
© 2023 Next Generation Tooling, LLC. 
All Rights Reserved
Created by Rapid Production Marketing

Find us on Instagram @nextgentool

  • Home
    • Schedule
    • Training
  • About
    • History
    • Contact
  • Territories
    • NorCal & N-NV
    • SoCal & S-NV
    • Mountains
  • Principals
    • Tooling >
      • 2V Industries
      • BIG Daishowa
      • Champion Storage
      • Drill America
      • Jewell Group
      • Mapal
      • Martindale Gaylee
      • OSG Tool
      • Performance Micro Tool
      • Platinum Tooling
      • TechniksUSA
    • Workholding >
      • BIG Daishowa
      • Earth Chain
      • Jergens
      • mPower Workholding
  • Promotions
  • Events
  • News
  • Technical